REMINDER ON CATEGORIES AND FUNCTORS

1. Definitions

1.1. Categories.

Definition 1.1. A category \mathscr{A} is the datum of:

- a set $Obj(\mathscr{A})$ of "objects" of \mathscr{A} ;
- for any $X, Y \in \text{Obj}(\mathscr{A})$, a set $\text{Hom}_{\mathscr{A}}(X, Y)$ of "morphisms from X to Y;"
- for any $X, Y, Z \in \text{Obj}(\mathscr{A})$, a map

$$\left\{\begin{array}{rcl} \operatorname{Hom}_{\mathscr{A}}(Y,Z) \times \operatorname{Hom}_{\mathscr{A}}(X,Y) & \to & \operatorname{Hom}_{\mathscr{A}}(X,Z) \\ (g,f) & \mapsto & g \circ f \end{array}\right.$$

defining "compositions of morphisms"

which satisfy the following conditions:

- (existence of identities) for any $X \in \text{Obj}(\mathscr{A})$ there exists an element $\text{id}_X \in \text{Hom}_{\mathscr{A}}(X, X)$ such that for any $Y \in \text{Obj}(\mathscr{A})$ and any $f \in \text{Hom}_{\mathscr{A}}(X, Y)$, resp. $g \in \text{Hom}_{\mathscr{A}}(Y, X)$, we have $f \circ \text{id}_X = f$, resp. $\text{id}_X \circ g = g$;
- (associativity) for any $X, Y, Z, W \in \text{Obj}(\mathscr{A})$ and any $f \in \text{Hom}_{\mathscr{A}}(X, Y)$, $g \in \text{Hom}_{\mathscr{A}}(Y, Z), h \in \text{Hom}_{\mathscr{A}}(Z, W)$ we have

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Given $X, Y \in \text{Obj}(\mathscr{A})$, an element $f \in \text{Hom}_{\mathscr{A}}(X, Y)$ will usually be denoted $f: X \to Y$.

Definition 1.2. A morphism $f: X \to Y$ is called an *isomorphism* if there exists a morphism $f^{-1}: Y \to X$ such that $f \circ f^{-1} = id_Y$ and $f^{-1} \circ f = id_X$.

Definition 1.3. If \mathscr{A} is a category, the *opposite category* is the category \mathscr{A}^{op} with:

- objects $Obj(\mathscr{A})$;
- for $X, Y \in \text{Obj}(\mathscr{A}^{\text{op}}) = \text{Obj}(\mathscr{A})$, morphisms given by $\text{Hom}_{\mathscr{A}^{\text{op}}}(X, Y) = \text{Hom}_{\mathscr{A}}(Y, X)$;
- for any $X, Y, Z \in \text{Obj}(\mathscr{A}^{\text{op}}) = \text{Obj}(\mathscr{A})$, the composition map

 $\operatorname{Hom}_{\mathscr{A}^{\operatorname{op}}}(Y,Z) \times \operatorname{Hom}_{\mathscr{A}^{\operatorname{op}}}(X,Y) \to \operatorname{Hom}_{\mathscr{A}^{\operatorname{op}}}(X,Z)$

given by

$$\begin{cases} \operatorname{Hom}_{\mathscr{A}}(Z,Y) \times \operatorname{Hom}_{\mathscr{A}}(Y,X) & \to & \operatorname{Hom}_{\mathscr{A}}(Z,X) \\ (g,f) & \mapsto & f \circ g \end{cases}$$

1.2. Functors.

Definition 1.4. Let \mathscr{A}, \mathscr{B} be a categories. A *functor* $F : \mathscr{A} \to \mathscr{B}$ is the datum of

- a map $F : \operatorname{Obj}(\mathscr{A}) \to \operatorname{Obj}(\mathscr{B});$
- for any $X, Y \in \mathscr{A}$, a map $F : \operatorname{Hom}_{\mathscr{A}}(X, Y) \to \operatorname{Hom}_{\mathscr{B}}(F(X), F(Y))$

which satisfy the following conditions:

• for any $X \in \text{Obj}(\mathscr{A})$ we have $F(\text{id}_X) = \text{id}_{F(X)}$;

• for any $X, Y, Z \in \text{Obj}(\mathscr{A})$ and any morphisms $f : X \to Y, g : Y \to Z, F(g \circ f) = F(g) \circ F(f).$

1.3. Morphisms of functors.

Definition 1.5. Let \mathscr{A}, \mathscr{B} be categories.

• Let $F, G : \mathscr{A} \to \mathscr{B}$ be functors. A morphism of functors $\varphi : F \to G$ is the datum, for any $X \in \operatorname{Obj}(\mathscr{A})$, of a morphism $\varphi_X : F(X) \to G(X)$ such that for any morphism $f : X \to Y$ the following diagram commutes:

- Let $F, G : \mathscr{A} \to \mathscr{B}$ be functors. A morphism of functors $\varphi : F \to G$ is called an isomorphism if there exists a morphism of functors $\psi : G \to F$ such that $\psi \circ \varphi = \mathrm{id}_F$ and $\varphi \circ \psi = \mathrm{id}_G$, or in other words if φ_X is an isomorphism for any $X \in \mathrm{Obj}(\mathscr{A})$.
- A functor $F : \mathscr{A} \to \mathscr{B}$ is called an *equivalence of categories* if there exists a functor $G : \mathscr{B} \to \mathscr{A}$ and isomorphisms of functors $F \circ G \xrightarrow{\sim} \operatorname{id}_{\mathscr{B}}$ and $G \circ F \xrightarrow{\sim} \operatorname{id}_{\mathscr{A}}$.

Theorem 1.6. Let \mathscr{A}, \mathscr{B} be categories, and let $F : \mathscr{A} \to \mathscr{B}$ be a functor. Then F is an equivalence of categories iff it is:

• fully faithful, i.e. for any $X, Y \in \text{Obj}(\mathscr{A})$ the map

$$F : \operatorname{Hom}_{\mathscr{A}}(X, Y) \to \operatorname{Hom}_{\mathscr{B}}(F(X), F(Y))$$

is a bijection;

• essentially surjective, i.e. for any $Y \in \text{Obj}(\mathscr{B})$ there exist $X \in \text{Obj}(\mathscr{A})$ and an isomorphism $F(X) \cong Y$.

1.4. Adjoint functors.

Definition 1.7. Let \mathscr{A}, \mathscr{B} be categories, and let $F : \mathscr{A} \to \mathscr{B}, G : \mathscr{B} \to \mathscr{A}$ be functors. An *adjunction* between F and G is the datum of morphisms of functors

 $\varphi: \mathrm{id}_{\mathscr{A}} \to G \circ F, \quad \psi: F \circ G \to \mathrm{id}_{\mathscr{B}}$

such that for any $X, Y \in \text{Obj}(\mathscr{A})$ the compositions

$$\operatorname{Hom}_{\mathscr{B}}(F(X),Y) \xrightarrow{G} \operatorname{Hom}_{\mathscr{A}}(GF(X),G(Y)) \xrightarrow{(-)\circ\varphi_X} \operatorname{Hom}_{\mathscr{A}}(X,G(Y))$$

and

$$\operatorname{Hom}_{\mathscr{A}}(X, G(Y)) \xrightarrow{F} \operatorname{Hom}_{\mathscr{B}}(F(X), FG(Y)) \xrightarrow{\varphi_Y \circ (-)} \operatorname{Hom}_{\mathscr{B}}(F(X), Y)$$

are mutually inverse bijections.

2. Additive and Abelian Categories

2.1. Additive categories and functors.

Definition 2.1. A category \mathscr{A} is called:

• pre-additive if, for any $X, Y \in \text{Obj}(\mathscr{A})$, we are given on the set $\text{Hom}_{\mathscr{A}}(X, Y)$ a structure a abelian group such that the compositions laws \circ are bilinear;

- *additive* if it is pre-additive and, in addition:
 - there exists a zero object $0 \in \text{Obj}(\mathscr{A})$, i.e. an object such that

$$\operatorname{Hom}_{\mathscr{A}}(X,0) = 0 = \operatorname{Hom}_{\mathscr{A}}(0,X)$$

- for any $X \in \text{Obj}(\mathscr{A})$;
- for any $X, Y \in \mathscr{A}$ there exists an object $Z \in \text{Obj}(\mathscr{A})$ and morphisms $i_X : X \to Z, i_Y : Y \to Z, p_X : Z \to X, p_Y : Z \to Y$ such that

$$p_X \circ i_X = \mathrm{id}_X, \quad p_Y \circ i_Y = \mathrm{id}_Y, \quad p_Y \circ i_X = 0, \quad p_X \circ i_Y = 0,$$
$$i_X \circ p_X + i_Y \circ p_Y = \mathrm{id}_Z.$$

Given $X, Y \in \text{Obj}(\mathscr{A})$, an object Z as in the definition above is necessarily unique, and denoted $X \oplus Y$. If satisfies

$$\begin{split} &\operatorname{Hom}_{\mathscr{A}}(W,X\oplus Y) = \operatorname{Hom}_{\mathscr{A}}(W,X) \oplus \operatorname{Hom}_{\mathscr{A}}(W,Y), \\ &\operatorname{Hom}_{\mathscr{A}}(X\oplus Y,W) = \operatorname{Hom}_{\mathscr{A}}(X,W) \oplus \operatorname{Hom}_{\mathscr{A}}(Y,W) \end{split}$$

for any $W \in \text{Obj}(\mathscr{A})$.

Definition 2.2. Given pre-additive categories \mathscr{A}, \mathscr{B} , a functor $F : \mathscr{A} \to \mathscr{B}$ is called *additive* if for any $X, Y \in \text{Obj}(\mathscr{A})$ the map

$$F : \operatorname{Hom}_{\mathscr{A}}(X, Y) \to \operatorname{Hom}_{\mathscr{B}}(F(X), F(Y))$$

is a group morphism.

If \mathscr{A},\mathscr{B} are additive categories and $F:\mathscr{A}\to\mathscr{B}$ is an additive functor, then we have

$$F(0) = 0$$

and

$$F(X \oplus Y) \cong F(X) \oplus F(Y)$$

for any $X, Y \in \mathscr{A}$.

2.2. Abelian categories.

Definition 2.3. Let \mathscr{A} be an additive category, let $X, Y \in \text{Obj}(\mathscr{A})$, and let $f \in \text{Hom}_{\mathscr{A}}(X,Y)$.

- A kernel of f is the datum an object ker(f) ∈ Obj(𝒜) and a morphism
 i : ker(f) → X such that for any Z ∈ Obj(𝒜) the following is an exact sequence of abelian groups:
 - $0 \to \operatorname{Hom}_{\mathscr{A}}(Z, \ker(f)) \xrightarrow{i \circ (-)} \operatorname{Hom}_{\mathscr{A}}(Z, X) \xrightarrow{f \circ (-)} \operatorname{Hom}_{\mathscr{A}}(Z, Y).$
- A cokernel of f is the datum an object $\operatorname{coker}(f) \in \operatorname{Obj}(\mathscr{A})$ and a morphism $p: Y \to \operatorname{coker}(f)$ such that for any $Z \in \operatorname{Obj}(\mathscr{A})$ the following is an exact sequence of abelian groups:

$$0 \to \operatorname{Hom}_{\mathscr{A}}(\operatorname{coker}(f), Z) \xrightarrow{(-) \circ p} \operatorname{Hom}_{\mathscr{A}}(Y, Z) \xrightarrow{(-) \circ f} \operatorname{Hom}_{\mathscr{A}}(X, Z).$$

If $f: X \to Y$ admits a cokernel, and if the morphism $Y \to \operatorname{coker}(f)$ admits a kernel, then this kernel is called the *image* of f, and is denoted $\operatorname{im}(f)$.

Definition 2.4. An *abelian* category is an additive category \mathscr{A} in which each morphism admits a kernel and a cokernel, and such that for any $X, Y \in \text{Obj}(\mathscr{A})$ and any $f \in \text{Hom}_{\mathscr{A}}(X,Y)$ the natural map from the cokernel of the map $\text{ker}(f) \to X$ to the kernel of the map $Y \to \text{coker}(f)$ is an isomorphism.

If \mathscr{A} is an abelian category, a morphism $f : X \to Y$ is said to be *injective* if $\ker(f) = 0$, and *surjective* if $\operatorname{coker}(f) = 0$.

Definition 2.5. Let \mathscr{A} be an abelian category.

- (1) An object $X \in \text{Obj}(\mathscr{A})$ is said to be *simple* if it is nonzero and moreover there exists no nonzero injective morphism $f : Y \to X$ which is not an isomorphism.
- (2) An object $X \in \text{Obj}(\mathscr{A})$ is said to be *semisimple* if it is isomorphic to a (finite) direct sum of simple objects.
- (3) The category \mathscr{A} is said to be semisimple if any object of \mathscr{A} is semisimple.

3. Exact functors

3.1. Definition.

Definition 3.1. Let \mathscr{A} be an abelian category. A sequence of objects and morphisms in \mathscr{A} :

$$X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} \cdots \xrightarrow{f_n} X_{n+1}$$

is called an exact sequence if for any $i \in \{2, \dots, n\}$ we have $f_i \circ f_{i-1} = 0$, and moreover the natural map $\operatorname{im}(f_{i-1}) \to \operatorname{ker}(f_i)$ is an isomorphism.

Definition 3.2. Let \mathscr{A}, \mathscr{B} be abelian categories, and let $F : \mathscr{A} \to \mathscr{B}$ be a functor. Then F is called

• *left exact* if for any exact sequence

$$0 \to X \xrightarrow{J} Y \xrightarrow{g} Z$$

in \mathscr{A} , the collection

$$0 \to F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z)$$

is an exact sequence in \mathscr{B} ;

• *right exact* if for any exact sequence

$$X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$$

in \mathscr{A} , the collection

$$F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z) \to 0$$

is an exact sequence in \mathscr{B} ;

• *exact* if it is both left exact and right exact, or equivalently if for any exact sequence

$$0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$$

in \mathscr{A} , the collection

$$0 \to F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z) \to 0$$

is an exact sequence in \mathcal{B} .

3.2. Projective and injective objects. Let \mathscr{A} be an abelian category.

Definition 3.3. An object X of \mathscr{A} is said to be:

• *projective* if the functor

$$\operatorname{Hom}_{\mathscr{A}}(X,-):\mathscr{A}\to \operatorname{\mathsf{Mod}}_{\mathbb{Z}}$$

is exact;

• *injective* if the functor

$$\operatorname{Hom}_{\mathscr{A}}(-,X):\mathscr{A}\to (\operatorname{\mathsf{Mod}}_{\mathbb{Z}})^{\operatorname{op}}$$

is exact.

- **Definition 3.4.** One says that the category \mathscr{A} admits enough projectives if for any $X \in \operatorname{Obj}(\mathscr{A})$ there exists an object Y in \mathscr{A} which is projective and a surjective morphism $Y \to X$.
 - One says that the category \mathscr{A} admits enough injectives if for any $X \in \operatorname{Obj}(\mathscr{A})$ there exists an object Y in \mathscr{A} which is injective and an injective morphism $X \to Y$.

4. GROTHENDIECK GROUP

4.1. For additive categories. If \mathscr{A} is an additive category, the *split Grothendieck* group $K^0_{\oplus}(\mathscr{A})$ is the quotient of the free abelian group generated by symbols [A] where A runs over isomorphism classes of objects of \mathscr{A} , by the relations

$$[B] = [A] + [C]$$

if $B \cong A \oplus C$.

This abelian group has the property that if M is an abelian group and f is a function from the set of objects of \mathscr{A} to M which has the following properties:

- f(A) = f(A') if $A \cong A'$;
- $f(A \oplus A') = f(A) + f(A'),$

then f factors through a group morphism $K^0_{\oplus}(\mathscr{A}) \to M$.

4.2. For abelian categories. If \mathscr{A} is an abelian category, the *Grothendieck group* $K^0(\mathscr{A})$ is the quotient of the free abelian group generated by symbols [A] where A runs over isomorphism classes of objects of \mathscr{A} , by the relations

$$[B] = [A] + [C]$$

if there exists an exact sequence

$$0 \to A \to B \to C \to 0.$$

This abelian group has the property that if M is an abelian group and f is a function from the set of objects of \mathscr{A} to M which has the following properties:

• f(A) = f(A') if $A \cong A'$;

• for any exact sequence $0 \to A \to B \to C \to 0$, we have f(B) = f(A) + f(C),

then f factors through a group morphism $K^0(\mathscr{A}) \to M$.

A favorable case is when every object of \mathscr{A} has finite length. In this case, if $(L_i : i \in I)$ is a system of representatives of isomorphism classes of simple objects, then $([L_i] : i \in I)$ is a basis of $K^0(\mathscr{A})$.

4.3. For triangulated categories. (This subsection is meant to be read after Lecture 5.)

If \mathscr{A} is a triangulated category, the *Grothendieck group* $K^0_{\Delta}(\mathscr{A})$ is the quotient of the free abelian group generated by symbols [A] where A runs over isomorphism classes of objects of \mathscr{A} , by the relations

$$[B] = [A] + [C]$$

if there exists a distinguished triangle

$$A \to B \to C \xrightarrow{+1}$$
.

This abelian group has the property that if M is an abelian group and f is a function from the set of objects of \mathscr{A} to M which has the following properties:

- f(A) = f(A') if $A \cong A'$;
- for any distinguished triangle $A \to B \to C \xrightarrow{+1}$, we have f(B) = f(A) + f(A) = f(A) + f(A) = f(A) + f(Af(C),

then f factors through a group morphism $K^0_{\Delta}(\mathscr{A}) \to M$. If \mathscr{A} is a triangulated category equipped with a bounded t-structure with heart \mathscr{A}^{\heartsuit} , then it is know that the embedding $\mathscr{A}^{\heartsuit} \subset \mathscr{A}$ induces a canonical isomorphism

$$K^0(\mathscr{A}^{\heartsuit}) \xrightarrow{\sim} K^0_{\Delta}(\mathscr{A}).$$