
REMINDER ON CATEGORIES AND FUNCTORS

1. Definitions

1.1. Categories.

Definition 1.1. A category A is the datum of:

• a set Obj(A ) of “objects” of A ;
• for any X,Y ∈ Obj(A ), a set HomA (X,Y ) of “morphisms from X to Y ;”
• for any X,Y, Z ∈ Obj(A ), a map{

HomA (Y, Z)×HomA (X,Y ) → HomA (X,Z)
(g, f) 7→ g ◦ f

defining “compositions of morphisms”

which satisfy the following conditions:

• (existence of identities) for any X ∈ Obj(A ) there exists an element idX ∈
HomA (X,X) such that for any Y ∈ Obj(A ) and any f ∈ HomA (X,Y ),
resp. g ∈ HomA (Y,X), we have f ◦ idX = f , resp. idX ◦ g = g;

• (associativity) for any X,Y, Z,W ∈ Obj(A ) and any f ∈ HomA (X,Y ),
g ∈ HomA (Y, Z), h ∈ HomA (Z,W ) we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Given X,Y ∈ Obj(A ), an element f ∈ HomA (X,Y ) will usually be denoted
f : X → Y .

Definition 1.2. A morphism f : X → Y is called an isomorphism if there exists
a morphism f−1 : Y → X such that f ◦ f−1 = idY and f−1 ◦ f = idX .

Definition 1.3. If A is a category, the opposite category is the category A op with:

• objects Obj(A );
• for X,Y ∈ Obj(A op) = Obj(A ), morphisms given by HomA op(X,Y ) =
HomA (Y,X);

• for any X,Y, Z ∈ Obj(A op) = Obj(A ), the composition map

HomA op(Y, Z)×HomA op(X,Y ) → HomA op(X,Z)

given by{
HomA (Z, Y )×HomA (Y,X) → HomA (Z,X)

(g, f) 7→ f ◦ g .

1.2. Functors.

Definition 1.4. Let A ,B be a categories. A functor F : A → B is the datum of

• a map F : Obj(A ) → Obj(B);
• for any X,Y ∈ A , a map F : HomA (X,Y ) → HomB(F (X), F (Y ))

which satisfy the following conditions:

• for any X ∈ Obj(A ) we have F (idX) = idF (X);
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• for any X,Y, Z ∈ Obj(A ) and any morphisms f : X → Y , g : Y → Z,
F (g ◦ f) = F (g) ◦ F (f).

1.3. Morphisms of functors.

Definition 1.5. Let A ,B be categories.

• Let F,G : A → B be functors. A morphism of functors φ : F → G is the
datum, for any X ∈ Obj(A ), of a morphism φX : F (X) → G(X) such that
for any morphism f : X → Y the following diagram commutes:

F (X) F (Y )

G(X) G(Y ).

F (f)

φX φY

G(f)

• Let F,G : A → B be functors. A morphism of functors φ : F → G is called
an isomorphism if there exists a morphism of functors ψ : G→ F such that
ψ ◦φ = idF and φ ◦ψ = idG, or in other words if φX is an isomorphism for
any X ∈ Obj(A ).

• A functor F : A → B is called an equivalence of categories if there exists
a functor G : B → A and isomorphisms of functors F ◦ G ∼−→ idB and
G ◦ F ∼−→ idA .

Theorem 1.6. Let A ,B be categories, and let F : A → B be a functor. Then F
is an equivalence of categories iff it is:

• fully faithful, i.e. for any X,Y ∈ Obj(A ) the map

F : HomA (X,Y ) → HomB(F (X), F (Y ))

is a bijection;
• essentially surjective, i.e. for any Y ∈ Obj(B) there exist X ∈ Obj(A )
and an isomorphism F (X) ∼= Y .

1.4. Adjoint functors.

Definition 1.7. Let A ,B be categories, and let F : A → B, G : B → A be
functors. An adjunction between F and G is the datum of morphisms of functors

φ : idA → G ◦ F, ψ : F ◦G→ idB

such that for any X,Y ∈ Obj(A ) the compositions

HomB(F (X), Y )
G−→ HomA (GF (X), G(Y ))

(−)◦φX−−−−−→ HomA (X,G(Y ))

and

HomA (X,G(Y ))
F−→ HomB(F (X), FG(Y ))

φY ◦(−)−−−−−→ HomB(F (X), Y )

are mutually inverse bijections.

2. Additive and abelian categories

2.1. Additive categories and functors.

Definition 2.1. A category A is called:

• pre-additive if, for anyX,Y ∈ Obj(A ), we are given on the set HomA (X,Y )
a structure a abelian group such that the compositions laws ◦ are bilinear;
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• additive if it is pre-additive and, in addition:
– there exists a zero object 0 ∈ Obj(A ), i.e. an object such that

HomA (X, 0) = 0 = HomA (0, X)

for any X ∈ Obj(A );
– for any X,Y ∈ A there exists an object Z ∈ Obj(A ) and morphisms
iX : X → Z, iY : Y → Z, pX : Z → X, pY : Z → Y such that

pX ◦ iX = idX , pY ◦ iY = idY , pY ◦ iX = 0, pX ◦ iY = 0,

iX ◦ pX + iY ◦ pY = idZ .

Given X,Y ∈ Obj(A ), an object Z as in the definition above is necessarily
unique, and denoted X ⊕ Y . If satisfies

HomA (W,X ⊕ Y ) = HomA (W,X)⊕HomA (W,Y ),

HomA (X ⊕ Y,W ) = HomA (X,W )⊕HomA (Y,W )

for any W ∈ Obj(A ).

Definition 2.2. Given pre-additive categories A ,B, a functor F : A → B is
called additive if for any X,Y ∈ Obj(A ) the map

F : HomA (X,Y ) → HomB(F (X), F (Y ))

is a group morphism.

If A ,B are additive categories and F : A → B is an additive functor, then we
have

F (0) = 0

and
F (X ⊕ Y ) ∼= F (X)⊕ F (Y )

for any X,Y ∈ A .

2.2. Abelian categories.

Definition 2.3. Let A be an additive category, let X,Y ∈ Obj(A ), and let f ∈
HomA (X,Y ).

• A kernel of f is the datum an object ker(f) ∈ Obj(A ) and a morphism
i : ker(f) → X such that for any Z ∈ Obj(A ) the following is an exact
sequence of abelian groups:

0 → HomA (Z, ker(f))
i◦(−)−−−→ HomA (Z,X)

f◦(−)−−−−→ HomA (Z, Y ).

• A cokernel of f is the datum an object coker(f) ∈ Obj(A ) and a morphism
p : Y → coker(f) such that for any Z ∈ Obj(A ) the following is an exact
sequence of abelian groups:

0 → HomA (coker(f), Z)
(−)◦p−−−−→ HomA (Y,Z)

(−)◦f−−−−→ HomA (X,Z).

If f : X → Y admits a cokernel, and if the morphism Y → coker(f) admits a
kernel, then this kernel is called the image of f , and is denoted im(f).

Definition 2.4. An abelian category is an additive category A in which each
morphism admits a kernel and a cokernel, and such that for anyX,Y ∈ Obj(A ) and
any f ∈ HomA (X,Y ) the natural map from the cokernel of the map ker(f) → X
to the kernel of the map Y → coker(f) is an isomorphism.
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If A is an abelian category, a morphism f : X → Y is said to be injective if
ker(f) = 0, and surjective if coker(f) = 0.

Definition 2.5. Let A be an abelian category.

(1) An object X ∈ Obj(A ) is said to be simple if it is nonzero and moreover
there exists no nonzero injective morphism f : Y → X which is not an
isomorphism.

(2) An object X ∈ Obj(A ) is said to be semisimple if it is isomorphic to a
(finite) direct sum of simple objects.

(3) The category A is said to be semisimple if any object of A is semisimple.

3. Exact functors

3.1. Definition.

Definition 3.1. Let A be an abelian category. A sequence of objects and mor-
phisms in A :

X1
f1−→ X2

f2−→ · · · fn−→ Xn+1

is called an exact sequence if for any i ∈ {2, · · · , n} we have fi ◦ fi−1 = 0, and
moreover the natural map im(fi−1) → ker(fi) is an isomorphism.

Definition 3.2. Let A ,B be abelian categories, and let F : A → B be a functor.
Then F is called

• left exact if for any exact sequence

0 → X
f−→ Y

g−→ Z

in A , the collection

0 → F (X)
F (f)−−−→ F (Y )

F (g)−−−→ F (Z)

is an exact sequence in B;
• right exact if for any exact sequence

X
f−→ Y

g−→ Z → 0

in A , the collection

F (X)
F (f)−−−→ F (Y )

F (g)−−−→ F (Z) → 0

is an exact sequence in B;
• exact if it is both left exact and right exact, or equivalently if for any exact
sequence

0 → X
f−→ Y

g−→ Z → 0

in A , the collection

0 → F (X)
F (f)−−−→ F (Y )

F (g)−−−→ F (Z) → 0

is an exact sequence in B.
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3.2. Projective and injective objects. Let A be an abelian category.

Definition 3.3. An object X of A is said to be:

• projective if the functor

HomA (X,−) : A → ModZ

is exact;
• injective if the functor

HomA (−, X) : A →
(
ModZ

)op
is exact.

Definition 3.4. • One says that the category A admits enough projectives
if for any X ∈ Obj(A ) there exists an object Y in A which is projective
and a surjective morphism Y → X.

• One says that the category A admits enough injectives if for any X ∈
Obj(A ) there exists an object Y in A which is injective and an injective
morphism X → Y .

4. Grothendieck group

4.1. For additive categories. If A is an additive category, the split Grothendieck
group K0

⊕(A ) is the quotient of the free abelian group generated by symbols [A]
where A runs over isomorphism classes of objects of A , by the relations

[B] = [A] + [C]

if B ∼= A⊕ C.
This abelian group has the property that if M is an abelian group and f is a

function from the set of objects of A to M which has the following properties:

• f(A) = f(A′) if A ∼= A′;
• f(A⊕A′) = f(A) + f(A′),

then f factors through a group morphism K0
⊕(A ) →M .

4.2. For abelian categories. If A is an abelian category, the Grothendieck group
K0(A ) is the quotient of the free abelian group generated by symbols [A] where A
runs over isomorphism classes of objects of A , by the relations

[B] = [A] + [C]

if there exists an exact sequence

0 → A→ B → C → 0.

This abelian group has the property that if M is an abelian group and f is a
function from the set of objects of A to M which has the following properties:

• f(A) = f(A′) if A ∼= A′;
• for any exact sequence 0 → A→ B → C → 0, we have f(B) = f(A)+f(C),

then f factors through a group morphism K0(A ) →M .
A favorable case is when every object of A has finite length. In this case, if

(Li : i ∈ I) is a system of representatives of isomorphism classes of simple objects,
then ([Li] : i ∈ I) is a basis of K0(A ).
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4.3. For triangulated categories. (This subsection is meant to be read after
Lecture 5.)

If A is a triangulated category, the Grothendieck group K0
∆(A ) is the quotient

of the free abelian group generated by symbols [A] where A runs over isomorphism
classes of objects of A , by the relations

[B] = [A] + [C]

if there exists a distinguished triangle

A→ B → C
+1−−→ .

This abelian group has the property that if M is an abelian group and f is a
function from the set of objects of A to M which has the following properties:

• f(A) = f(A′) if A ∼= A′;

• for any distinguished triangle A → B → C
+1−−→, we have f(B) = f(A) +

f(C),

then f factors through a group morphism K0
∆(A ) →M .

If A is a triangulated category equipped with a bounded t-structure with heart
A ♡, then it is know that the embedding A ♡ ⊂ A induces a canonical isomorphism

K0(A ♡)
∼−→ K0

∆(A ).
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