Lecture 12: main exercises

Exercise 12.1. Recall the sheaves

$$
\mathcal{P}_{k, \ell}:=\mathcal{O}_{\mathrm{Gr}_{G L_{n}}^{k}} \otimes \operatorname{det}\left(L_{0} / L\right)^{\ell}\left[\frac{1}{2} k(n-k)\right]
$$

as well as the convolution varieties

$$
\operatorname{Gr}_{G L_{n}}^{\left(k_{1}, k_{2}\right)}:=\left\{L_{2} \stackrel{k_{2}}{\subset} L_{1} \stackrel{k_{1}}{\subset} L_{0}: t L_{0} \subset L_{1}, t L_{1} \subset L_{2}\right\} .
$$

Show that for $k \in[0, n]$ and $\ell \in \mathbb{Z}$ we have exact triangles

$$
\begin{aligned}
& \mathcal{P}_{k-1, \ell} * \mathcal{P}_{k+1, \ell} \rightarrow \mathcal{P}_{k, \ell+1} * \mathcal{P}_{k, \ell-1} \rightarrow \mathcal{P}_{k, \ell} * \mathcal{P}_{k, \ell} \\
& \mathcal{P}_{k, \ell} * \mathcal{P}_{k, \ell} \rightarrow \mathcal{P}_{k, \ell-1} * \mathcal{P}_{k, \ell+1} \rightarrow \mathcal{P}_{k+1, \ell} * \mathcal{P}_{k-1, \ell}
\end{aligned}
$$

in the derived category of $\operatorname{Gr}_{G L_{n}}$ (here for notational convenience $\mathcal{P}_{-1, \ell}$ and $\mathcal{P}_{n+1, \ell}$ are interpreted as zero).

You might want to first assume $\ell=0$ to (at least) simplify notation. The general case should follow fairly easily.

