Lecture 2: main exercises

Exercise 2.1. Consider the embeddings

$$
i:\{0\} \rightarrow \mathbb{A}^{2}=\operatorname{Spec} \mathbb{C}[x, y]
$$

and

$$
j: U:=\mathbb{A}^{2} \backslash\{0\} \rightarrow \mathbb{A}^{2} .
$$

Note that U is not affine. Identify in an explicit way the following sheaves. For example, if it is a sheaf on \mathbb{A}^{2}, identify it as an explicit $\mathbb{C}[x, y]$-module.
(a) $i^{*}\left(\mathcal{I}_{0}\right)$ where \mathcal{I}_{0} is the ideal sheaf (x, y) of $\{0\} \subset \mathbb{A}^{2}$.
(b) $i_{*}\left(\mathcal{O}_{0}\right)$. This is the structure sheaf of $\{0\} \subset \mathbb{A}^{2}$, and we also abusively denote it \mathcal{O}_{0}.
(c) $i^{*}\left(\mathcal{O}_{0}\right)$.
(d) $i_{*}\left(\mathcal{O}_{0}\right)^{\vee}$.
(e) $j^{*}\left(\mathcal{O}_{0}\right)$.
(f) $j_{*}\left(\mathcal{O}_{U}\right)$.
(g) $j_{*}\left(j^{*}\left(\mathcal{O}_{0}\right) \otimes \mathcal{O}_{U}\right)$ and $\mathcal{O}_{0} \otimes j_{*}\left(\mathcal{O}_{U}\right)$.

Exercise 2.2. Take $G=G L_{n}$ and consider the convolution map

$$
m: \mathrm{Gr}_{\omega_{1}^{\vee}} \widetilde{\times} \mathrm{Gr}_{\omega_{1}^{\vee}} \rightarrow \mathrm{Gr}_{\leq 2 \omega_{1}^{\vee}} .
$$

Consider the small orbit $\mathrm{Gr}_{\omega_{2}^{\vee}} \subset \mathrm{Gr}_{\leq 2 \omega_{1}^{\vee}}$ and denote $D=m^{-1}\left(\mathrm{Gr}_{\omega_{2}^{\vee}}\right)$.
(a) Find an appropriate bundle V with a section s which vanishes precisely along D.
(b) Use this to compute (describe) the conormal bundle of $D \subset \mathrm{Gr}_{\omega_{1}^{\vee}} \widetilde{\times} \mathrm{Gr}_{\omega_{1}^{\vee}}$.
(c) Compute the relative cotangent bundle of $D \rightarrow \mathrm{Gr}_{\omega_{2}^{\vee}}$ and compare with the answer above.

Lecture 2: additional exercises

Exercise 2.3. Repeat the previous exercise with the map

$$
m: \operatorname{Gr}_{\omega_{1}^{\vee}} \widetilde{\times} \mathrm{Gr}_{\omega_{n-1}^{\vee}} \rightarrow \mathrm{Gr}_{\leq \omega_{1}^{\vee}+\omega_{n-1}^{\vee}}
$$

Exercise 2.4. Let $\pi: V \rightarrow X$ be a rank r vector bundle over a scheme X. Find a rank r vector bundle W on V and a section of W which vanishes exactly along the zero section $X \subset V$. What is the normal bundle of $X \subset V$?

