Lecture 2: main exercises

Exercise 2.1. Consider the embeddings

$$i: \{0\} \to \mathbb{A}^2 = \operatorname{Spec} \mathbb{C}[x, y]$$

and

$$j: U := \mathbb{A}^2 \setminus \{0\} \to \mathbb{A}^2$$

Note that U is not affine. Identify in an explicit way the following sheaves. For example, if it is a sheaf on \mathbb{A}^2 , identify it as an explicit $\mathbb{C}[x, y]$ -module.

- (a) $i^*(\mathcal{I}_0)$ where \mathcal{I}_0 is the ideal sheaf (x, y) of $\{0\} \subset \mathbb{A}^2$.
- (b) $i_*(\mathcal{O}_0)$. This is the structure sheaf of $\{0\} \subset \mathbb{A}^2$, and we also abusively denote it \mathcal{O}_0 .
- (c) $i^*(\mathcal{O}_0)$.
- (d) $i_*(\mathcal{O}_0)^{\vee}$.
- (e) $j^*(\mathcal{O}_0)$.
- (f) $j_*(\mathcal{O}_U)$.
- (g) $j_*(j^*(\mathcal{O}_0) \otimes \mathcal{O}_U)$ and $\mathcal{O}_0 \otimes j_*(\mathcal{O}_U)$.

Exercise 2.2. Take $G = GL_n$ and consider the convolution map

$$m: \operatorname{Gr}_{\omega_1^{\vee}} \widetilde{\times} \operatorname{Gr}_{\omega_1^{\vee}} \to \operatorname{Gr}_{\leq 2\omega_1^{\vee}}.$$

Consider the small orbit $\mathsf{Gr}_{\omega_2^{\vee}} \subset \mathsf{Gr}_{\leq 2\omega_1^{\vee}}$ and denote $D = m^{-1}(\mathsf{Gr}_{\omega_2^{\vee}})$.

- (a) Find an appropriate bundle V with a section s which vanishes precisely along D.
- (b) Use this to compute (describe) the conormal bundle of $D \subset \mathsf{Gr}_{\omega_1^{\vee}} \widetilde{\times} \mathsf{Gr}_{\omega_1^{\vee}}$.
- (c) Compute the relative cotangent bundle of $D \to \mathsf{Gr}_{\omega_2^{\vee}}$ and compare with the answer above.

Exercise 2.3. Repeat the previous exercise with the map

$$m: \mathrm{Gr}_{\omega_1^\vee} \widetilde{\times} \mathrm{Gr}_{\omega_{n-1}^\vee} \to \mathrm{Gr}_{\leq \omega_1^\vee + \omega_{n-1}^\vee}.$$

Exercise 2.4. Let $\pi : V \to X$ be a rank r vector bundle over a scheme X. Find a rank r vector bundle W on V and a section of W which vanishes exactly along the zero section $X \subset V$. What is the normal bundle of $X \subset V$?