Exercise 3.1. Let $R = \mathbb{C}[x_1, x_2]$, where x_1 and x_2 have weight 1. Let S be the R-module defined by $S = R/(x_1, x_2)$.

Let $\Lambda = \mathbb{C}[\varepsilon_1, \varepsilon_2]$, where ε_1 and ε_2 are graded commutative variables of weight 1 and degree -1. That is, they obey

$$\varepsilon_1^2 = \varepsilon_2^2 = 0, \qquad \qquad \varepsilon_1 \varepsilon_2 = -\varepsilon_2 \varepsilon_1.$$

Let $K^{\bullet} := \Lambda \otimes R$. We write $\varepsilon_i x_j$ for $\varepsilon_i \otimes x_j$, etc. We equip K^{\bullet} with an *R*-linear differential *d* determined by

$$d(1) = 0,$$
 $d(\varepsilon_i) = x_i,$ $d(\varepsilon_i \varepsilon_j) = \varepsilon_i x_j - \varepsilon_j x_i.$

- (a) Show that S has a projective resolution $K^{\bullet} \to S$.
- (b) For each of the following graded *R*-modules *M*, find a quasi-isomorphism from $\operatorname{Hom}_{R}^{\bullet}(K^{\bullet}, M) \in \operatorname{Ch}_{\mathbb{C}}^{\operatorname{gr}}$ to a complex with zero differential.

Use this to compute the cohomology of $\operatorname{RHom}_R(S, M) \in \operatorname{DMod}_{\mathbb{C}}^{\operatorname{gr}}$, or in other words, to compute the groups $\operatorname{Ext}^k(S, M)$).

- (i) M = R,
- (ii) M = S,
- (iii) $M = R/(x_1)$.

Exercise 3.2. Let $\Lambda^{\vee} = \mathbb{C}[\theta_1, \theta_2]$, where θ_1 and θ_2 are graded commutative variables of weight -1 and degree 1.

Find an *R*-linear action of Λ^{\vee} on K^{\bullet} which is compatible with the gradings (i.e. the action of θ_i should decrease weight by 1 and increase degree by 1). Show that the induced algebra morphism $\Lambda^{\vee} \to \operatorname{Hom}^{\bullet}_{R}(K^{\bullet}, K^{\bullet})$ is also a quasi-isomorphism of complexes.

(Warmup: first do this for the 1-variable case.)

Exercise 3.3. Let $R = \text{Sym}^{\bullet}(V)$, where V is a finite-dimensional vector space with weight 1. Also let $\Lambda = \text{Sym}^{\bullet}(V[1])$, interpreted in the graded commutative sense. That is, Λ is isomorphic as an ungraded algebra to the exterior algebra $\Lambda^{\bullet}(V)$.

- (a) Find a differential on $K^{\bullet} := \Lambda \otimes R$ such that S = R/(V) has a projective resolution $K^{\bullet} \to S$.
- (b) For each of the following graded *R*-modules *M*, find a quasi-isomorphism from $\operatorname{Hom}_{R}^{\bullet}(K^{\bullet}, M) \in \operatorname{Ch}_{\mathbb{C}}^{\operatorname{gr}}$ to a complex with zero differential.

Use this to compute the cohomology of $\operatorname{RHom}_R(S, M) \in \operatorname{DMod}_{\mathbb{C}}^{\operatorname{gr}}$, or in other words, to compute the groups $\operatorname{Ext}^k(S, M)$.

- (i) M = R,
- (ii) M = S,
- (iii) M = R/(W), where $W \subset V$ is a subspace.
- (c) Let $\Lambda^{\vee} = \operatorname{Sym}^{\bullet}(V^*[-1])$, interpreted in the graded commutative sense, where V^* is the linear dual of V. Find an *R*-linear action of Λ^{\vee} on K^{\bullet} which is compatible with the gradings. Show that the induced algebra morphism $\Lambda^{\vee} \to \operatorname{Hom}^{\bullet}_{R}(K^{\bullet}, K^{\bullet})$ is also a quasi-isomorphism of complexes.

Exercise 3.4. More practice computing Exts. Let $R = \mathbb{C}[x_1, x_2]$. Let $M = R/(x^2, xy, y^2)$.

- (a) Find a free resolution of M.
- (b) Compute $\operatorname{Ext}^k(M, S)$ for all $k \ge 0$.
- (c) Compute $\operatorname{Ext}^k(M, M)$ for all $k \ge 0$.

Exercise 3.5. More practice computing Exts. Let $A = \mathbb{C}[y]/(y^4)$. For each $0 \le i \le 4$, let $M_i = A/(y^i)$, an *i*-dimensional indecomposable A-module.

- (a) For each i, find a free resolution of M_i .
- (b) Compute $\operatorname{Ext}^k(M_1, M_2)$ and $\operatorname{Ext}^k(M_3, M_2)$ for all $k \ge 0$.
- (c) Compute $\operatorname{Ext}^k(M_2, M_1)$ and $\operatorname{Ext}^k(M_2, M_3)$ for all $k \ge 0$.
- (d) Compute $\operatorname{Ext}^k(M_3, M_3)$ for all $k \ge 0$.