Exercise 5.1. Recall the blowup $\pi: Y = \operatorname{Bl}_0 \mathbb{C}^2 \to \mathbb{C}^2$ as well as the description

$$\operatorname{Bl}_0 \mathbb{C}^2 \cong \{ (0 \stackrel{1}{\subset} V \stackrel{1}{\subset} \mathbb{C}^2, v \in V) \}$$

where π is the map which forgets V. Additionally there is the map $p: Y \to \mathbb{P}^1$ which forgets v, and the inclusion $\mathbb{P}^1 \to Y$ as the locus where v = 0 (this is the exceptional divisor).

(a) In the lecture we computed $R\pi_*\mathcal{O}_Y$ by factoring π as the composition

$$Y \xrightarrow{i} \mathbb{P}^1 \times \mathbb{C}^2 \xrightarrow{\pi} \mathbb{C}^2$$

Use that method to calculate $R\pi_*p^*\mathcal{O}_{\mathbb{P}^1}(\ell)$ where $\ell = -1$. What about when $\ell = 1$?

- (b) Find a line bundle on Y with a section which vanishes exactly along $\mathbb{P}^1 \subset Y$.
- (c) Use this to identify the normal bundle $N_{\mathbb{P}^1/Y}$ and ideal sheaf $\mathscr{I}_{\mathbb{P}^1/Y}$ of $\mathbb{P}^1 \subset Y$.
- (d) Use the short exact sequence $0 \to \mathscr{I}_{\mathbb{P}^1/Y} \to \mathcal{O}_Y \to \mathcal{O}_{\mathbb{P}^1} \to 0$ to check your answers for $R\pi_*p^*\mathcal{O}_{\mathbb{P}^1}(\ell)$ above.
- (e) Extra challenge: try to do the same with $\pi : \operatorname{Bl}_0 \mathbb{C}^n \to \mathbb{C}^n$ for n > 2?
- (f) Use the embedding *i* (or any other method) to identify explicitly the dualizing sheaf ω_Y of *Y*.
- (g) Compute $\mathbb{D}(\mathcal{O}_Y)$ and use the calculations above to confirm that $R\pi_*\mathbb{D}(\mathcal{O}_Y) \cong \mathbb{D}(R\pi_*\mathcal{O}_Y)$.

Exercise 5.2. Let $\pi: V \to X$ be a rank r vector bundle over a scheme X and let $\sigma: X \to V$ be the zero section.

- (a) Compute $L\sigma^*\sigma_*(\mathcal{O}_X) \in D_{coh}(X)$
- (b) Compute $\mathscr{H}_{om}(\sigma_*\mathcal{O}_X, \sigma_*\mathcal{O}_X) \in D_{coh}(V).$