Lecture 5: main exercises

Exercise 5.1. Recall the blowup $\pi: Y=\mathrm{Bl}_{0} \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ as well as the description

$$
\mathrm{Bl}_{0} \mathbb{C}^{2} \cong\left\{\left(0 \stackrel{1}{\subset} V \stackrel{1}{\subset} \mathbb{C}^{2}, v \in V\right)\right\}
$$

where π is the map which forgets V. Additionally there is the map $p: Y \rightarrow \mathbb{P}^{1}$ which forgets v, and the inclusion $\mathbb{P}^{1} \rightarrow Y$ as the locus where $v=0$ (this is the exceptional divisor).
(a) In the lecture we computed $R \pi_{*} \mathcal{O}_{Y}$ by factoring π as the composition

$$
Y \xrightarrow{i} \mathbb{P}^{1} \times \mathbb{C}^{2} \stackrel{\tilde{\pi}}{\rightarrow} \mathbb{C}^{2} .
$$

Use that method to calculate $R \pi_{*} p^{*} \mathcal{O}_{\mathbb{P}^{1}}(\ell)$ where $\ell=-1$. What about when $\ell=1$?
(b) Find a line bundle on Y with a section which vanishes exactly along $\mathbb{P}^{1} \subset Y$.
(c) Use this to identify the normal bundle $N_{\mathbb{P}^{1} / Y}$ and ideal sheaf $\mathscr{I}_{\mathbb{P}^{1} / Y}$ of $\mathbb{P}^{1} \subset Y$.
(d) Use the short exact sequence $0 \rightarrow \mathscr{\mathscr { P }}_{\mathbb{P}^{1} / Y} \rightarrow \mathcal{O}_{Y} \rightarrow \mathcal{O}_{\mathbb{P}^{1}} \rightarrow 0$ to check your answers for $R \pi_{*} p^{*} \mathcal{O}_{\mathbb{P}^{1}}(\ell)$ above.
(e) Extra challenge: try to do the same with $\pi: \mathrm{Bl}_{0} \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ for $n>2$?
(f) Use the embedding i (or any other method) to identify explicitly the dualizing sheaf ω_{Y} of Y.
(g) Compute $\mathbb{D}\left(\mathcal{O}_{Y}\right)$ and use the calculations above to confirm that $R \pi_{*} \mathbb{D}\left(\mathcal{O}_{Y}\right) \cong$ $\mathbb{D}\left(R \pi_{*} \mathcal{O}_{Y}\right)$.

Lecture 5: additional exercises

Exercise 5.2. Let $\pi: V \rightarrow X$ be a rank r vector bundle over a scheme X and let $\sigma: X \rightarrow V$ be the zero section.
(a) Compute $L \sigma^{*} \sigma_{*}\left(\mathcal{O}_{X}\right) \in D_{\text {coh }}(X)$
(b) Compute $\mathscr{H} \operatorname{com}\left(\sigma_{*} \mathcal{O}_{X}, \sigma_{*} \mathcal{O}_{X}\right) \in D_{\text {coh }}(V)$.

