WARTHOG 2018, Lecture I-1

Main Exercise 1. We consider the subgroup $\mathbf{G}=\mathrm{Sp}_{4}$ of GL_{4} of automorphisms preserving the symplectic form

$$
J=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right]
$$

More precisely, it is defined by

$$
\mathbf{G}=\left\{M \in \mathrm{GL}_{4} \mid\left({ }^{\operatorname{tr}} M\right) J M=J\right\}
$$

(a) Show that \mathbf{G} is a linear algebraic group.
(b) Determine the set of diagonal matrices in \mathbf{G} and show that it is a maximal torus of \mathbf{G}, which we will denote by \mathbf{T} (Hint: compute the centralizer of \mathbf{T}).
(c) Let us consider the following matrices:

$$
s=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \text { and } \quad t=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Show that s and t lie in \mathbf{G} and normalize \mathbf{T}. Check that their image in $W=N_{\mathbf{G}}(\mathbf{T}) / \mathbf{T}$ are generators of order 2 of W.
(d) Show that the following matrices form unipotent subgroups of \mathbf{G} when x varies in K

$$
\begin{array}{lll}
{\left[\begin{array}{cccc}
1 & x & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -x \\
0 & 0 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & x & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{llll}
1 & 0 & x & 0 \\
0 & 1 & 0 & x \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{llll}
1 & 0 & 0 & x \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{array}
$$

(e) Finding the roots:

- Show that the conjugation by \mathbf{T} on each of the previous matrices is given by multiplication of x by a multiplicative character of \mathbf{T} and express these characters on the basis of diagonal coordinates of \mathbf{T}. We will denote by Φ^{+}the set form by these characters.
- Find a basis of Φ^{+}where all the elements are non-negative combination of the basis elements.
- Compute the index of the lattice $\mathbb{Z} \Phi^{+}$in the lattice of characters of \mathbf{T}.
(f) Determine the Levi subgroups of \mathbf{G} containing \mathbf{T}.

WARTHOG 2018, Lecture I-1 supplementary exercises

Exercise 1. We work with $\mathbf{G}=\mathrm{GL}_{n}$ and we take \mathbf{T} to be the maximal torus consisting of invertible diagonal matrices.
(a) Show that $\mathbf{T}_{\mathrm{S}}=\mathbf{T} \cap \mathrm{SL}_{n}\left(\right.$ resp. $\mathbf{T}_{\mathrm{P}}=\mathbf{T} / Z(\mathbf{G})$) is a maximal torus of $\mathrm{SL}_{n}\left(\right.$ resp. $\left.\mathrm{PGL}_{n}\right)$.
(b) Check that the corresponding Weyl groups are isomorphic.

Let $X(\mathbf{T})=\operatorname{Hom}\left(\mathbf{T}, \mathbb{G}_{m}\right)$ be the group of characters of \mathbf{T}.
(c) Determine the action of W on $X(\mathbf{T})$ using the diagonal coordinates of \mathbf{T}.
(d) Show that $\mathbf{T}_{\mathrm{S}} \hookrightarrow \mathbf{T}$ and $\mathbf{T} \rightarrow \mathbf{T}_{\mathrm{P}}$ induce linear maps $X(\mathbf{T}) \rightarrow X\left(\mathbf{T}_{\mathrm{S}}\right)$ and $X\left(\mathbf{T}_{\mathrm{P}}\right) \hookrightarrow$ $X(\mathbf{T})$.

Given $i \neq j$ and $x \in \mathbb{G}_{a}$ we set $u_{i j}(x)=\mathrm{I}_{n}+x E_{i, j}$ and $\mathbf{U}_{i, j}=\operatorname{Im} u_{i, j}$.
(e) Show that there exists $\alpha_{i, j} \in X(\mathbf{T})$ such that

$$
\forall t \in \mathbf{T}, \forall x \in \mathbb{G}_{a} \quad t u_{i, j}(x) t^{-1}=u_{i, j}\left(\alpha_{i, j}(t) x\right) .
$$

Determine $\alpha_{i, j}$ explicitly.
(f) Show that $\Phi=\left\{\alpha_{i, j} \mid i \neq j\right\}$ is preserved under the linear maps in (d).
(g) Compute $X\left(\mathbf{T}_{\mathrm{S}}\right) / \mathbb{Z} \Phi$ and $X\left(\mathbf{T}_{\mathrm{P}}\right) / \mathbb{Z} \Phi$.

Exercise 2. Let \mathbf{G} be an affine algebraic group over K and let $\mathbf{U} \subseteq \mathbf{G}$ be a subgroup of \mathbf{G} (not necessarily closed). Show that the following hold:
(a) the closure $\overline{\mathbf{U}} \subseteq \mathbf{G}$, in the Zariski topology, is a subgroup of \mathbf{G},
(b) if \mathbf{U} is abelian then so is $\overline{\mathbf{U}}$.

Exercise 3. A matrix $A \in \operatorname{Mat}_{n}(K)$ is called unipotent if all the eigenvalues of A are equal to 1. Let

$$
\mathscr{U}_{n}(K)=\left\{A \in \operatorname{Mat}_{n}(K) \mid A \text { is unipotent }\right\} .
$$

Show that the following hold:
(a) $\mathscr{U}_{n}(K)$ is a Zariski closed subset of $\operatorname{Mat}_{n}(K)$,
(b) $\mathscr{U}_{n}(K)$ is irreducible.

Let $J_{n} \in \mathscr{U}_{n}(K)$ be a Jordan block of size $n \times n$ with every diagonal entry equal to 1 . Furthermore, let $X \subseteq \mathscr{U}_{n}(K)$ be the set of all matrices whose Jordan normal form is J_{n}. We call the elements of X regular unipotent. Show that the following hold:
(c) X is a Zariski open subset of $\mathscr{U}_{n}(K)$,
(d) $\operatorname{dim} \mathscr{U}_{n}(K)=n(n-1)$.
(Hint: (b). Let $\mathrm{U}_{n}(K) \leqslant \mathrm{GL}_{n}(K)$ be the subgroup of uni-upper triangular matrices. Consider the map $\mathrm{GL}_{n}(K) \times \mathrm{U}_{n}(K) \rightarrow \operatorname{Mat}_{n}(K) ;(P, A) \mapsto P^{-1} A P$. (c). One possibility is to write the condition $A \in X$ as a condition on the rank of A. (d). Consider the map $\mathrm{GL}_{n}(K) \rightarrow$ $\operatorname{Mat}_{n}(K) ; P \mapsto P^{-1} J_{n} P$.)

Exercise 4. Assume \mathbf{T} is a torus and let $\mathbf{S} \leqslant \mathbf{T}$ be a closed subgroup. Show that \mathbf{T} / \mathbf{S} is a torus.

Exercise 5. Assume \mathbf{T} is a torus of dimension $n \geqslant 0$.
(a) For any $d \geqslant 1$ show that the set $\mathbf{T}_{d}=\left\{t \in \mathbf{T} \mid t^{d}=1\right\}$ is a finite subset of \mathbf{T}.
(b) Show that the set $\bigcup_{d \geqslant 1} \mathbf{T}_{d} \subseteq \mathbf{T}$ is dense in \mathbf{T}.
(c) Let \mathbf{G} be a linear algebraic group and $\mathbf{U} \leqslant \mathbf{G}$ be a closed subgroup which is an n dimensional torus. Show that if \mathbf{G} is connected and \mathbf{U} is normal in \mathbf{G} then $\mathbf{U} \leqslant Z(\mathbf{G})$, where $Z(\mathbf{G})$ is the centre of \mathbf{G}.

