WARTHOG 2018, Lecture I-1

Main Exercise 1. We consider the subgroup $\mathbf{G} = \mathrm{Sp}_4$ of GL_4 of automorphisms preserving the symplectic form

$$J = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

More precisely, it is defined by

$$\mathbf{G} = \{ M \in \mathrm{GL}_4 \mid (^{\mathrm{tr}}M)JM = J \}$$

- (a) Show that **G** is a linear algebraic group.
- (b) Determine the set of diagonal matrices in \mathbf{G} and show that it is a maximal torus of \mathbf{G} , which we will denote by \mathbf{T} (Hint: compute the centralizer of \mathbf{T}).
- (c) Let us consider the following matrices:

$$s = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \text{and} \quad t = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Show that s and t lie in **G** and normalize **T**. Check that their image in $W = N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$ are generators of order 2 of W.

(d) Show that the following matrices form unipotent subgroups of \mathbf{G} when x varies in K

$\begin{bmatrix} 1 & x & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
0 1 0 0	$0 \ 1 \ x \ 0$
$0 \ 0 \ 1 \ -x$	$0 \ 0 \ 1 \ 0$
0 0 0 1	$0 \ 0 \ 0 \ 1$
110 r 01	
	1 0 0 x
$ \begin{bmatrix} 1 & 0 & x & 0 \\ 0 & 1 & 0 & x \end{bmatrix} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

- (e) Finding the roots:
 - Show that the conjugation by \mathbf{T} on each of the previous matrices is given by multiplication of x by a multiplicative character of \mathbf{T} and express these characters on the basis of diagonal coordinates of \mathbf{T} . We will denote by Φ^+ the set form by these characters.
 - Find a basis of Φ^+ where all the elements are non-negative combination of the basis elements.
 - Compute the index of the lattice $\mathbb{Z}\Phi^+$ in the lattice of characters of **T**.
- (f) Determine the Levi subgroups of **G** containing **T**.

WARTHOG 2018, Lecture I-1 supplementary exercises

Exercise 1. We work with $\mathbf{G} = \mathrm{GL}_n$ and we take \mathbf{T} to be the maximal torus consisting of invertible diagonal matrices.

- (a) Show that $\mathbf{T}_{\mathrm{S}} = \mathbf{T} \cap \mathrm{SL}_n$ (resp. $\mathbf{T}_{\mathrm{P}} = \mathbf{T}/Z(\mathbf{G})$) is a maximal torus of SL_n (resp. PGL_n).
- (b) Check that the corresponding Weyl groups are isomorphic.

Let $X(\mathbf{T}) = \operatorname{Hom}(\mathbf{T}, \mathbb{G}_m)$ be the group of characters of \mathbf{T} .

- (c) Determine the action of W on $X(\mathbf{T})$ using the diagonal coordinates of \mathbf{T} .
- (d) Show that $\mathbf{T}_{S} \hookrightarrow \mathbf{T}$ and $\mathbf{T} \twoheadrightarrow \mathbf{T}_{P}$ induce linear maps $X(\mathbf{T}) \twoheadrightarrow X(\mathbf{T}_{S})$ and $X(\mathbf{T}_{P}) \hookrightarrow X(\mathbf{T})$.

Given $i \neq j$ and $x \in \mathbb{G}_a$ we set $u_{ij}(x) = I_n + xE_{i,j}$ and $\mathbf{U}_{i,j} = \operatorname{Im} u_{i,j}$.

(e) Show that there exists $\alpha_{i,j} \in X(\mathbf{T})$ such that

$$\forall t \in \mathbf{T}, \forall x \in \mathbb{G}_a \quad tu_{i,j}(x)t^{-1} = u_{i,j}(\alpha_{i,j}(t)x).$$

Determine $\alpha_{i,j}$ explicitly.

- (f) Show that $\Phi = \{\alpha_{i,j} \mid i \neq j\}$ is preserved under the linear maps in (d).
- (g) Compute $X(\mathbf{T}_{\mathrm{S}})/\mathbb{Z}\Phi$ and $X(\mathbf{T}_{\mathrm{P}})/\mathbb{Z}\Phi$.

Exercise 2. Let **G** be an affine algebraic group over K and let $\mathbf{U} \subseteq \mathbf{G}$ be a subgroup of **G** (not necessarily closed). Show that the following hold:

- (a) the closure $\overline{\mathbf{U}} \subseteq \mathbf{G}$, in the Zariski topology, is a subgroup of \mathbf{G} ,
- (b) if \mathbf{U} is abelian then so is \mathbf{U} .

Exercise 3. A matrix $A \in Mat_n(K)$ is called *unipotent* if all the eigenvalues of A are equal to 1. Let

$$\mathscr{U}_n(K) = \{ A \in \operatorname{Mat}_n(K) \mid A \text{ is unipotent} \}.$$

Show that the following hold:

- (a) $\mathscr{U}_n(K)$ is a Zariski closed subset of $\operatorname{Mat}_n(K)$,
- (b) $\mathscr{U}_n(K)$ is irreducible.

Let $J_n \in \mathscr{U}_n(K)$ be a Jordan block of size $n \times n$ with every diagonal entry equal to 1. Furthermore, let $X \subseteq \mathscr{U}_n(K)$ be the set of all matrices whose Jordan normal form is J_n . We call the elements of X regular unipotent. Show that the following hold:

- (c) X is a Zariski open subset of $\mathscr{U}_n(K)$,
- (d) dim $\mathscr{U}_n(K) = n(n-1)$.

(Hint: (b). Let $U_n(K) \leq GL_n(K)$ be the subgroup of uni-upper triangular matrices. Consider the map $GL_n(K) \times U_n(K) \to Mat_n(K); (P, A) \mapsto P^{-1}AP$. (c). One possibility is to write the condition $A \in X$ as a condition on the rank of A. (d). Consider the map $GL_n(K) \to$ $Mat_n(K); P \mapsto P^{-1}J_nP$.) **Exercise 4.** Assume T is a torus and let $S \leq T$ be a closed subgroup. Show that T/S is a torus.

Exercise 5. Assume **T** is a torus of dimension $n \ge 0$.

- (a) For any $d \ge 1$ show that the set $\mathbf{T}_d = \{t \in \mathbf{T} \mid t^d = 1\}$ is a finite subset of \mathbf{T} .
- (b) Show that the set $\bigcup_{d \ge 1} \mathbf{T}_d \subseteq \mathbf{T}$ is dense in \mathbf{T} .
- (c) Let **G** be a linear algebraic group and $\mathbf{U} \leq \mathbf{G}$ be a closed subgroup which is an *n*-dimensional torus. Show that if **G** is connected and **U** is normal in **G** then $\mathbf{U} \leq Z(\mathbf{G})$, where $Z(\mathbf{G})$ is the centre of **G**.