1.1 REDUCTIVE GROUPS

1) Linear algebraic groups

All the algebraic varieties will be over an algebraically closed field $\bar{k} = k$

Definition: A linear algebraic group G is an affine variety with a structure of a group st.

- the multiplication $G \times G \rightarrow G$
- the inverse $G \rightarrow G$

are morphisms of algebraic varieties.

Example: $G_a = (k, +)$ additive group $\hookrightarrow \left[\begin{array}{cc} 1 & \ast \\ \ast & 1 \end{array} \right] \subseteq \text{GL}_2(k)$

$G_a = \text{Spec } k[t]$

"multiplication" is $k[t] \rightarrow k[t] \otimes k[t]$

$\quad t \mapsto t \otimes 1 + 1 \otimes t$

"inverse" is $k[t] \rightarrow k[t]$

$\quad t \mapsto -t$

* $G_m = (k^*, x)$ multiplicative group $\subseteq \text{GL}_n(k)$

$G_m = \text{Spec } k[t, t^{-1}]$ mult. $\quad t \mapsto t \otimes t$

inv. $\quad t \mapsto t^{-1}$

* GL_n is an algebraic group
$\text{Gl}_n = \text{Spec } k[x_{ij}, \text{det}^{-1}]$ and mult. & inv. are polynomial

Exercise: write the mult. and inv. explicitly as morphisms of k-algebras $k[\text{Gl}_n] \to k[\text{Gl}_n] \otimes k[\text{Gl}_n]$ and $k[\text{Gl}_n] \to k[\text{Gl}_n]$

More generally every closed subgroup of Gl_n is an algebraic gp. and the converse holds:

explanation of terminology $\text{(affine} \to \text{linear)}$

Thm: Any linear algebraic group is a closed subgroup of Gl_n for some $n \geq 1$.

Consequence: as in Gl_n, there is a notion of semi-simple and unipotent (1-nilpotent) elements and a multiplicative Jordan decomposition (they do not depend on the embedding $G \hookrightarrow \text{Gl}_n$)

2) **Remarkable subgroups**

Let G be a connected linear algebraic group

Def: a **torus** is a linear alg. gp. isomorphic to $(\text{G}_m)^r$

A torus of G is a closed subgp of G which is a torus.
Thm: Any two maximal tori of G (maximal for the inclusion) are conjugate under G

Ex: if T is a torus of $G\ell_n$ then the elements of T are simultaneously diagonalizable

\Rightarrow T is conjugate to a subgroup of $\begin{pmatrix} \ast & \ast \\ \ast & \ast \end{pmatrix}$

def: a Borel subgroup of G is a maximal closed connected solvable subgroup of G

Thm:
(i) Any two Borel subgroups are conjugate under G
(ii) Any max. torus T of G is contained in a Borel subgroup B of G and such pairs $T \leq B$ are conjugate under G.
(iii) If B is a Borel subgroup, then $N_G(B) = B$

Ex: By the thm of Lie-Kolchin, the elt of a connected solvable subgroup of $G\ell_n$ are simultaneously triangulizable

\Rightarrow Borel subgroups of $G\ell_n$ are conjugate to $\begin{pmatrix} \ast & \ast \\ \ast & \ast \end{pmatrix}$
3) Reductive groups \(G \) connected alg. gp

Def. The radical \(R(G) \) of \(G \) is the maximal closed connected solvable normal subgroup of \(G \). The unipotent radical \(R_u(G) \) of \(G \) is the max. closed connected normal subgroup of \(G \) containing only unipotent elements.

Ex: \(G = GL_n \), \(B = \left(\begin{array}{c} \ast \ \ast \\ \ast \end{array} \right) \), \(T = \left(\begin{array}{c} \ast \\ \ast \end{array} \right) \)

\[R(G) = Z(G) \quad R(B) = B \quad R(T) = T \]

\[R_u(G) = \{1\} \quad R_u(B) = \left(\begin{array}{c} 1 \\ \ast \end{array} \right) \quad R_u(T) = \{1\} \]

In addition, \(B \cong T \times R_u(B) \)

(This is general for connected solvable groups)

Def. \(G \) is semisimple if \(R(G) = \{1\} \)

\(G \) is reductive if \(R_u(G) = \{1\} \)

\(R_u(G) \subseteq R(G) \) therefore semisimple \(\Rightarrow \) reductive

\(G/R(G) \) is semisimple, \(G/R_u(G) \) is reductive.
4) **Classification**

Let G be a connected reductive group.

Thm: If T is a maximal torus of G then $C_G(T) = T$.

Def: Given T a maximal torus we define “the” Weyl group W of G by

$$W = N_G(T)/C_G(T) = N_G(T)/T$$

Ex: $G = \text{GL}_n$, $T = \left(\begin{array}{cc} * & \cdot \\ \cdot & * \end{array} \right)$, $N_G(T)/T \cong S_n$.

If $B \supseteq T$ is a Borel subgroup of G, we define

$$S = \{ w \in W \mid B U B w B \text{ is a subgroup of } G \}$$

the set of simple reflections of W.

Prop: (W, S) is a Coxeter system.

Ex: $G = \text{GL}_n$, $w \in S \iff w = \left[\begin{array}{ccc} 1 & \ldots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \ldots & 1 \end{array} \right]$ $(i, j) \in \Delta_n$.

W is the same for G, $[G, G]$ or $G/Z(G)$:

GL_n, SL_n, PGL_n.

We need to add a dual pair of integral rep of W (not dahlm) to classify connected reductive groups.
Classification of irreducible \(W \)

- \(A_n \) \(\text{GL}_n, SL_n, PGL_n \)
- \(B_n \) \(\text{SO}_{2n+1}, \text{Spin}_{2n+1} \)
- \(C_n \) \(\text{Sp}_{2n} \)
- \(D_n \) \(\text{SO}_{2n}, \text{Spin}_{2n} \)
- \(E_n \) \(n = 6, 7, 8 \)
- \(F_4 \)
- \(G_2 \)