1) The variety $X(w)$

Recall that $O(w) \leq \mathbb{B} \times \mathbb{B}$ is a G-orbit of dimension $l(w) + \dim \mathbb{B}$

Def: Given $w \in W$, the Deligne-Lusztig variety $X(w)$ is

$$X(w) : = \{ (B_1, B_2) \in O(w) \mid B_2 = F(B_1) \}$$

$$= (O(w) \cap \Gamma_F) \leftarrow \text{graph of } F \text{ in } \mathbb{B} \times \mathbb{B}$$

Through the first projection $\mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$ we get

$$X(w) = \{ B \in \mathbb{B} \mid B \overset{w}{\rightarrow} F(B) \}$$

Ex:

a) Recall that $O(1) = \Delta \mathbb{B}$

\Rightarrow $X(1) = \Delta \mathbb{B}^F = \mathbb{B}^F$ finite set $\Delta (G/B)^F = G^F/B^F$

b) For $G = SL_2$ we have two Deligne-Lusztig varieties

. $X(1) = \mathbb{B}^F = \mathbb{P}_1(F_q)$

. $X(s) = \mathbb{B} \setminus \mathbb{B}^F = \mathbb{P}_1 \setminus \mathbb{P}_1(F_q)$
With \(\Gamma_F \subset \{(B, F(B)) \mid B \in \mathcal{B}\} \leq \mathcal{B} \times \mathcal{B} \)

the variety \(X(w) \) is defined via the following cartesian square

\[
\begin{array}{ccc}
X(w) & \longrightarrow & \Gamma_F \\
\downarrow & \circlearrowright & \downarrow \\
\mathcal{O}(w) & \longrightarrow & \mathcal{B} \times \mathcal{B}
\end{array}
\]

Since \(\Gamma_F \) is transverse to \(\mathcal{O}(w) \) we deduce:

Prop: \(X(w) \) is a smooth quasi-projective variety

\[\text{of dimension } l(w) \]

Remk: \(X(w) \) is conjectured to be affine

(proved for \(q > \text{Coxeter number by Deligne-Lusztig} \))

The action of \(G \) on \(\mathcal{O}(w) \) induces an action of the finite reductive group \(G^F \) on \(X(w) \).

Alternative description

Fix \(T \subseteq B \) both \(F \)-stable

Then \(\mathcal{O}(w) = G \cdot (B \cdot^w B) \cap \{(gB, g'B) \mid g^{-1}g' \in \mathcal{B} \times \mathcal{B}\} \)

\(\Rightarrow X(w) \cap \{gB \in G/B \mid g^{-1}F(g) \in \mathcal{B} \times \mathcal{B}\} \)
In this description G acts by left multiplication on gB (this does not change g').

Recall that $O(w) = \bigsqcup_{v \leq w} O(v)$.

By transversality of Γ_F with any G-orbit on $B \times B$ we get

$$X(w) = \bigsqcup_{v \leq w} X(v)$$

and $X(w_0) \cong B$.

Note that $X(w)$ is smooth whenever $O(w)$ is.

Prop: If w does not lie in an F-stable parabolic subgroup of W then $X(w)$ is irreducible.

For the general case, assume that $I \subseteq S$ is an F-stable set of simple reflections. We can form:

- W_I the parabolic subgroup of W
- $P_I = BW_IB$ the parabolic subgroup of G
- $L_I = P_I \cap I^o P_I$ the standard Levi subgroup of G

L_I is connected reductive with Weyl group W_I and $P_I = L_I \times U_I$ with $U_I = R_u(P_I)$.

\downarrow Levi decomposition
Let $w \in W_I$ and $X_{L_I}(w)$ the DL variety in L_I.

The action of L_I^F on it can be inflated to an action of P_I^F (with U_I^F acting trivially) and the map

$$G_X^F \times_{P_I^F} X_{L_I}(w) \to X_G(w)$$

$$(g, l(B_n L_I)) \mapsto glB$$

is a G^F-equivariant isomorphism of varieties.

All the irreducible components of $X(w)$ have dim $l(w)$.

2) The variety $\tilde{X}(w)$

Let $U = R_u(B)$ (so that $B = T \times U$).

We replace $B = G/B$ by $U = G/U$ and define

$$\tilde{X}(w) = \{ gU \in G/U \mid g^{-1} F(g) \in U_w U \}$$

Again $\tilde{X}(w)$ is smooth of pure dimension $l(w)$

G^F acts on $\tilde{X}(w)$ on the left and $T^w F$ on the right.
Indeed, if $t \in T^w F$, then $F(t) = w', t w$
so that $g^* F(g) \in U w U$

$\Rightarrow (g t)^* F(g t) = t^* g^* F(g) F(t)$

$\in t^* U w U w^{-1} t w = U w U$

(since T normalizes U)

Prop: The projection $G/ U \stackrel{T}{\rightarrow} G/ B$ induces a G_F-equivariant isomorphism of varieties

$\tilde{X}(w)/ T^w F \xrightarrow{\sim} X(w)$
Exercise: \(G = Sl_2 \geq B = \left\{ \left(\begin{array}{cc} 1 & \ast \\ \ast & 1 \end{array} \right) \right\} \geq T = \left\{ \left(\begin{array}{cc} 1 & \ast \\ \ast & 1 \end{array} \right) \right\} \)

1) Show that the maps
\[
G \rightarrow A^2 \setminus \{(0,0)\} \rightarrow \mathbb{P}_1, \\
\left(\begin{array}{cc} a & c \\ b & d \end{array} \right) \mapsto (a;b) \mapsto [a:b]
\]
induce \(G \)-equivariant isomorphisms \(G/U \cong A^2 \setminus \{(0,0)\} \) and \(G/B \cong \mathbb{P}_1 \).

2) Let \(s = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \). Describe explicitly \(U s U \) and \(B s B \).

3) Deduce that \(\tilde{X}(s) \cong \left\{ (x,y) \in A^2 \setminus \{(0,0)\} \mid xy^q - yx^q = 1 \right\} \) and \(X(s) \cong \left\{ [x:y] \in \mathbb{P}_1 \mid xy^q - yx^q \neq 0 \right\} \)

with the natural map \(\tilde{X}(s) \rightarrow X(s) \).

4) Show that \(\tilde{X}(s) \rightarrow A_1, \\
(x,y) \mapsto xy^{q^2} - yx^{q^2} \)
induces an isomorphism \(Sl_2(q) \setminus \tilde{X}(s) \cong A_1 \).
5) Show that $(x, y) \mapsto x$ induce an isomorphism $\tilde{X}(s) \cong \mathcal{A}, \setminus \{0\}$;

6) Compute $\# \tilde{X}(s)^{t_F}$ for any $t \in T^{*F}$.