To $w \in W$ one can attach a Deligne-Lusztig variety $X(w)$
Acts on $X(w)$:
. the finite reductive group G^F
. the finite torus T^F (on $X(w)$)
. the Frobenius F^δ for any integer δ

\[F^\delta(w) = w \]

What else?

1) **Braid monoid and braid groups**

Let (W, S) be a (finite) Coxeter system, with presentation

\[W = \langle S \mid s^2 = 1, sts \ldots = tst \ldots \rangle \]

m_{st} = order of st

m_{st} terms

def: the Artin-Tits braid monoid B_w^+ and braid group B_w

are defined by the presentation

\[B_w^{(+)} = \langle S \mid sts \ldots = tst \ldots \rangle_{gp/\text{monoid}} \]

By definition there is a surjective group/monoid morphism

\[B_w, B_w^+ \to W \]
It has a set-theoretic splitting \(W \xrightarrow{\beta} B^+_W \) given by reduced expressions. In other words \\
\(\beta(w \cdot w') = \beta(w) \cdot \beta(w') \) if \(l(ww') = l(w) + l(w') \) \\
If there is no ambiguity we will still denote by \(w \) the image \\
of \(w \) by the section \(W \xhookrightarrow{} B^+_W \) \\
The length function on \(W \) extends to \(B^+_W \) and \(B^-_W \) \((\text{values in } \mathbb{Z}) \)

Topological construction

Let \(V \) be a reflection representation of \(W \)
\[V^w = V \setminus \cup \text{ reflecting hyperplanes} \]
\[= \text{ subset of } V \text{ where } W \text{ acts freely} \]
Then \(B^+_W \cong \Pi_1(V^w/W, x_0) \)

2) DL varieties attached to els of \(B^+_W \)

\[
\text{def}: \text{ Given } w = (w_1, ..., w_r) \in W \text{ we define } \\
O(w) = O(w_1) \times_{B_1} O(w_2) \times_{B_2} ... \times_{B_{r+1}} O(w_r) \\
= \{(B_1, ..., B_{r+1}) \mid B_1 \xrightarrow{w_1} B_2 \xrightarrow{w_2} ... \xrightarrow{w_r} B_{r+1} \} \\
\text{Then } O(w, w') \subseteq O(ww') \text{ whenever } l(ww') = l(w) + l(w') \]
Moreover this isomorphism is canonical.

One can define $O(b)$ for every $b \in B_w^+$ and a morphism $O(b) \to B \times B$ coming from the first and last projection from $O(w_1, ..., w_r)$.

Def. The DL variety $X(b)$ attached to $b \in B_w^+$ is defined by the following cartesian square

\[
\begin{array}{ccc}
X(b) & \xrightarrow{F} & \text{graph of } F \text{ in } B \times B \\
\downarrow & \circlearrowleft & \downarrow \\
O(b) & \to & B \times B
\end{array}
\]

More precisely, if $b = w_1 w_2 ... w_r$ with $w_i \in W$ then

\[
X(b) = X(w_1, ..., w_r) = \{ (B_1, ..., B_r) \mid B_1 \xrightarrow{w_1} B_2 \xrightarrow{w_2} ... \xrightarrow{w_{r-1}} B_r \xrightarrow{w_r} F(B) \}
\]

3) **Cyclic shifts**

If $B_1 \xrightarrow{w} B_2$ then $F(B_1) \xrightarrow{F(w)} F(B_2)$ therefore the Frobenius endomorphism F induces a bijective morphism

\[
\begin{array}{ccc}
X(b) & \to & X(F(b)) \\
(\bar{B}_1, ..., \bar{B}_r) & \mapsto & (F(\bar{B}_1), ..., F(\bar{B}_r))
\end{array}
\]
We can decompose it as follows: if \(b = w_1, w_2, \ldots, w_r \) then we have

\[
\begin{align*}
X(w_1, \ldots, w_r) & \xrightarrow{D_{w_1}} X(w_2, \ldots, w_r, F(w_1)) \xrightarrow{D_{w_2}} X(w_2, \ldots, w_r, F(w_1,w_2)) \ldots \\
(B_1, \ldots, B_r) & \xmapsto{} (B_2, \ldots, B_r, F(B_1)) \xmapsto{} (B_2, \ldots, B_r, F(B_1), F(B_2)) \ldots
\end{align*}
\]

More generally if \(b \in B^+_w \) decomposes as \(b = b_1, b_2 \) with \(b_1, b_2 \in B^+_w \) then \(D_{b_1} : X(b_1, b_2) \xrightarrow{} X(b_2, F(b_1)) \)

\[
\begin{array}{c}
\text{called a cyclic shift operator on } X(b).
\end{array}
\]

Ex: \(D_2 = \text{identity} \)

\[
D_b = F \text{ acting on } X(b)
\]

In the particular case where \(b_1, b F(b_1) = b \)

(i.e. when \(b_1 \in C_{B^+_w}(bF) \)) then \(D_{b_1} \in \text{End}(X(b)) \)

Note that \(D_{b_1} \) commutes with the action of \(G^F \)

\[
\Rightarrow \text{ almost an action of } G^F \times C_{B^+_w}(bF) \text{ on } X(b).
\]

(it will be the case on the cohomology of \(X(b) \))