V - 1 Blocks and defect groups

Fix a group G and a prime number l

Def: an l-modular system is (K, O, k) where
- O is a complete DVR with max. ideal m
- $K = \text{Frac}(O)$
- $k = O/m$ field of char. l

Ex: $(\mathbb{F}_l, \mathbb{Z}_l, \mathbb{F}_l)$

Def: We say that (K, O, k) is big enough if K_G and k_G split.
Recall that K_G split if all simple modules remain simple after extending the field.

Rem: let $K = \mathbb{Q}(\zeta)$, ζ prim. lth root of unity.
O its ring of integers with residue field k.
Then (K, O, k) is big enough for G.

Comparing K_G-mod and k_G-mod

- K_G-mod is semisimple: it's enough to understand the simple objects $\text{Irr} K_G$. They are det. by their character
- k_G-mod is semisimple if and only if $l | |G|$.
 => if $l | |G|$ many interesting classes of objects:
 simple, indec., proj. modules + homological information

Ex: let $G = C_2 = \langle g \rangle$, $g^2 = 1$ and K_G k_G indec.
Then $g \in \text{End}_k(M)$ sat. $g^l m = m$ for all m.
Therefore, $(g^l-1)m = (g-1)^l m = 0$.
So $g-1$ is nilpotent. Up to isomorphism $M = k[x]/(x^l)$ and $g . m = \text{tr} (1) . m$ for all $m \in M$,
where \(J_r(\lambda) = \left(\begin{array}{c} \lambda_1 \\ \vdots \\ \lambda_r \end{array} \right) \).

Note that \(M \) is simple iff \(r = d(\lambda) = \text{Ir}(kG) = \text{dim} \).
and \(M \) is projective iff \(r = l \). (In this case \(M \cong kP \).

\underline{lifting projective modules}

\textbf{Fact:} Every \(kG \)-module \(M \) has a proj. cover \(P_M \to \to M \).
In addition, \(P_M \) lifts to a proj. \(OTG \)-module \(\widetilde{P}_M \) s.th.
\[k \widetilde{P}_M = k \otimes P_M \cong P_M. \text{ (liftings unique up to isomorphism)} \]

\textbf{Prop:} Let \(P, Q \in kG \)-mod projective. Then
\[P \cong Q \iff K\widetilde{P} = K\widetilde{Q} \]

\(\Rightarrow \) The character of \(K\widetilde{P} \) determines \(P \).

2) Blocks and defect groups

\textbf{Def:} A \textit{block} of \(kG \) (or \(OTG \)) is an indec. direct summand of \(kG \) or \(OTG \) as a \((G, \mathfrak{g}) \)-bimodule.

\textbf{Fact:} \(OTG \to kG \) induces a bijection of blocks.

\textbf{Ex.} \(G = S_3 \)
\(l = 2 \):
\[kG \cong B \oplus \text{Mat}_2(k) \]
\(l = 3 \):
\[kG \text{ is indec.} \]
\(l = 3 \):
\[kG \cong k \oplus k \oplus \text{Mat}_2(k) \]

If \(OTG \cong \bigoplus_i B_i \) then \(OTG \cong \bigotimes_i B_i \) as \(G \)-algebras.

\textbf{Therefore:} \(OTG \)-mod \(\cong \bigoplus_i B_i \)-mod.

This decomp. (tens. by \(k \) or \(K \)) induces partitions
\[\text{Irr } kG = \prod_i \text{Irr } KB_i; \]
\[\text{Irr } kG = \prod_i \text{Irr } KB_i; \]
We say \(x \in \text{Im } KG \) belongs to \(B \) if \(x \in \text{Im } KB \).

Def: The principal block \(B_0 \) is the block to which \(1_G \) belongs, that is:

Ex: \(G = S_3 \)

\(l = 2 \): \(\text{Im } KG = \left\{ x \mid x \equiv 1 \text{ mod } 2 \right\} \)

\(l = 3 \): only one block

\(l = 3 \): \(\text{Im } KG = \left\{ x \mid x \equiv 1 \text{ mod } 3 \right\} \)

To each block \(B \) one can attach an \(l \)-subgroup \(D \) of \(G \) called a defect group of \(B \).

We have

\[|D| = \max \left\{ \left(\frac{|G|}{|N|} \right) |x \in \text{Im } (KB) \right\} \]

Example: \(D \cong \text{Mat}_n(\mathbb{F}) \) for some \(n \leftrightarrow D = 1 \)

- defect groups of principal block are always Sylow subgroups

3) Principal blocks for finite nd groups

Setting: \(G \) count. red. group / \(F_p \), \(F : G \rightarrow G \) Frobenius.

\(T \) quasi-split maximal torus of \(G \) \[W = N_G(T)H \]

(continued in n-stable level)

Fact: If \(l \neq p \) and \(l > h \) (= ord of \(\text{Frob} \))

then Sylow \(l \)-subgroups of \(GF \) are abelian.

\(\Rightarrow \) Sylow \(l \)-subgroups are contained in tori.

Thm: let \(D \) be a Sylow \(l \)-subgroup of \(GF \) and we \(w \in W \)

so that \(D \rightarrow TW \cdot F \). Assume \(C_G(D) \) max. torus.

Then the unipotent characters in the principal block are the constituents of \(R_w \) (= \(R_w(1) \)).
Example: $G = GL_n$ and $k > n$ (Coxeter number).

- If $l | q - 1 = \Phi_l(q)$ then TF is 2-Sylow.

And the principal block contains all the unipotent characters.

- If $l | \Phi_l(q)$ then $T_{(1^2, \ldots, 1)}(q) \cong F_{q^l}$ is the Sylow 2-group and the unipotent class in the principal block are

$$\lambda \in F = \mathbb{C} \frac{1}{1}, \mathbb{C} \frac{1}{1}, \mathbb{C} \frac{-1}{1}, \ldots, \mathbb{C} \frac{-1}{1} = \mathbb{F}$$

Recall from Olsson's talk:

$w = (1^2, \ldots, n)$

$$R_w = \sum_{\lambda \in \mathbb{F}} x_{\lambda}(w) \mathbb{C}_\lambda$$

$x_{\lambda}(w) = 0$ if

$$\lambda = (1,1^{n-1})$$