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1. Notation and Bibliographic Remarks

� Notation

Throughout K = Fp will be an algebraic closure of the finite field Fp of prime charac-
teristic p. Recall that K is an algebraic group under addition, which we denote K+, and
K \ {0} is an algebraic group under multiplication, which we denote K⇥. Let r = pa be a
power of p for some natural number a > 0 then we write Fr = {x 2 K | xr = x} for the
finite subfield of K of order r.

Affine varieties will typically be denoted by bold letters. If they are endowed with a
generalised Frobenius endomorphism then the corresponding fixed point group will be
denoted in roman letters. For example, if X is an affine variety and F : X ! X is a
generalised Frobenius endomorphism then X denotes the fixed point group XF = {x 2 X |
F(x) = x}. Throughout G will typically be reserved for a connected reductive algebraic
group. We will denote by T0 and B0 a fixed maximal torus and Borel subgroup of G such
that T0 6 B0.

� Bibliographic remarks

Most of the material presented here is standard and covered in numerous textbooks.
We give here a small sample of where to find more information on the material in each
section.

2. Everything concerning root systems and Coxeter groups is covered in the first two
chapters of [Hum90]. For a more rewarding read one can also consult Chapter 6 of
[Bou02]. The material on root data can be found in Chapter 4 of [Car93] or again,
for a more rewarding read see Demazure’s excellent articles in [GP11] (in particular
Exposé XXI).

3. The theory of algebraic groups has been developed in many textbooks. Every-
thing we mention here, except dual groups, is contained in the standard references
[Gec03], [Hum75] and [Spr09]. The material on dual groups is covered in Chapter
4 of [Car93]. For those unfamiliar with algebraic geometry then [Gec03] is a good
starting point followed by [Spr09] for more structural results. For more on Lie
algebras one can consult [EW06] and [Hum78] (the latter going much further).
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4. Everything we use here is contained in first part of Chapter 4 of [Gec03].

5. Everything mentioned here is covered in the standard references [Car93], [DM91]
and [Lus84]. For Deligne–Lusztig characters one may also consult Chapter 4 of
[Gec03], which is recommended for those unfamiliar with the theory. Most of the
results we mention here were proved originally by Deligne and Lusztig, many of
them in their landmark paper [DL76]. The Jordan decomposition was proved for
connected centre groups in [Lus84] and was later extended to the disconnected
centre case in [Lus88], (see also the discussion in section 15 of [CE04]).

It is also worthwhile noting that many of the results in Sections 2 to 4 are succinctly covered
in [MT11]. Additionally, the survey articles contained in [CG98] also cover many the topics
we discuss here.

2. Root Systems, Coxeter Groups and Root Data

� Root Systems and Coxeter Groups

We will assume that V is a real Euclidean vector space endowed with a positive definite
symmetric bilinear form (·, ·) : V ⇥V ! R.

Definition 2.1. For any a 2 V we say a linear map sa 2 GL(V) is a reflection along a if
sa(a) = �a and sa fixes pointwise the hyperplane Ha = {v 2 V | v ? a} orthogonal to a.

Using the fact that V = Ha � Ra we can see that for any a 2 V the reflection sa is
unique and given by the formula

sa(v) = v� hv, aia where hv, ai :=
2(v, a)
(a, a)

(2.1)

for all v 2 V.

Exercise 2.2. Define a map h�,�i : V ⇥V ! R by setting hu, vi = 2(u,v)
(v,v) . Show that this is

not bilinear.

Exercise 2.3. Show that for each a 2 V the reflection sa 2 GL(V) is contained in the
orthogonal group O(V). In other words we have (sau, sav) = (u, v) for all u, v 2 V.

Exercise 2.4. Given w 2 O(V) prove that for each a 2 V we have wsaw�1 = swa.

Exercise 2.5. Given two roots a, b 2 F show that sasb = sbsa if a and b are orthogonal (i.e.
(a, b) = 0).
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Definition 2.6. We say F ✓ V is a root system of V if the following conditions are satisfied.

(R1) F is finite, 0 62 F and V is the R-span of F.

(R2) for every a 2 F we have ca 2 F (for any c 2 R) implies c = ±1.

(R3) for every a 2 F the reflection sa preserves F.

(R4) for any a, b 2 F we have sa(b) 2 b + Za.

Remark 2.7. Throughout we will assume that our root systems are cyrstallographic, i.e. they
satisfy the crystallographic condition (R4). In general one may drop this condition to obtain
a wider class of root systems but we will not consider this here (see [Hum90]).

If F ✓ V is a root system then we define WF = hsa | a 2 Fi 6 O(V) to be the Weyl
group of F. In general, we define a Weyl group to be any group isomorphic to WF for some
root system F. Although simple in nature, root systems form the underlying ingredient in
the classification of more complicated Lie type objects such as semisimple Lie algebras and
connected reductive algebraic groups.

We say two root systems F1 and F2 are isomorphic if there exists a vector space iso-
morphism j : RF1 ! RF2 such that hj(b), j(a)i = hb, ai for all roots b, a 2 F1. Note
that an isomorphism of root systems induces a natural isomorphism WF1 ! WF2 of the
corrrsponding Weyl groups sending sa 7! sj(a) for all a 2 F1. However, not all isomor-
phisms between Weyl groups arise from isomorphisms of the underlying root systems. To
classify root systems we need to introduce the notion of a simple system of roots, which is
analogous to the notion of a basis for a vector space.

Definition 2.8. Assume 6 is a total ordering on V, then we say v 2 V is positive (with
respect to 6) if 0 6 l. If F ✓ V is a root system then we call

F+ := {a 2 F | 0 > a}

a system of positive roots or positive system (defined by 6).

Exercise 2.9. Show that positive systems exist for any root system by defining a total or-
dering on any Euclidean vector space V.

Exercise 2.10. Assume F+ ⇢ F is a positive system then define F� := {�a | a 2 F�} to
be the corresponding negative system. Check that F is a disjoint union F+ tF�.

Definition 2.11. Let F ✓ V be a root system. We say D ⇢ F is a system of simple roots or
simple system if D is a basis of V and each a 2 F is a linear combination of elements from D
where all coefficients are of the same sign (i.e. all positive or negative).
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In opposition to positive systems, it is not clear from the definition that simple systems
exist for arbitrary root systems. However, this is the case.

Theorem 2.12. Assume F ✓ V is a root system then the following hold.

(i) Every positive system F+ ⇢ F contains a unique simple system, hence simple systems
exist.

(ii) Any simple system D ⇢ F is contained in a positive system.

(iii) The Weyl group WF acts simply transitively on the set of positive systems (hence simple
systems) of F.

(iv) Assume D ⇢ F is a simple system and let S = {sa | a 2 D} be the corresponding set of
reflections then

WF = hsa 2 S | (sasb)
m(a,b) = 1i,

where m(a, b) is the order of the product sasb.

(v) Given any b 2 F there exists w 2WF such that wb 2 D, where D is a fixed simple system
of F.

Remark 2.13. Note that (v) in Theorem 2.12 says that a root system F can be recovered
from a simple system D by acting with elements of the Weyl group.

The above theorem shows that the Weyl group WF is an example of a wider class of
groups known as Coxeter groups. We note that Coxeter groups that are not Weyl groups
can be obtained from root systems by relaxing some of the conditions in Definition 2.6, for
example the crystallographic condition (R4).

Definition 2.14. Assume W is a group and S ✓W is a finite generating set such that W has
a presentation given by

W = hs 2 S | (st)mst = 1i
for some mst 2 Z [ {•}. We say (W, S) a Coxeter system and W a Coxeter group if mss = 1
for all s 2 S and mst > 2 for all s 6= t 2 S.

Exercise 2.15. If (W, S) is a Coxeter system prove that mst = mts for all s, t 2 S. In particular,
the matrix (mst)s,t2S is symmetric.

If D is a fixed simple system of F then we call S = {sa | a 2 D} the corresponding
set of simple reflections. By (iv), we have for every w 2 WF that there exists s1, . . . , sr 2 S

such that w = s1 · · · sr. We define the length `(w) of w to be the smallest r for which
such an expression exists and call the corresponding expression reduced (note that reduced
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ha, bi ha, bi q |b|2/|a|2
0 0 p/2 undetermined
1 1 p/3 1
�1 �1 2p/3 1

1 2 p/4 2
�1 �2 3p/4 2

1 3 p/6 3
�1 �3 5p/6 3

Table 2.1: Ratios of root lengths.

expressions are not unique!). This defines a function ` : WF ! N called the length function
(by convention we set `(1) = 0).

Exercise 2.16. Prove that the length function does not depend upon the set of simple re-
flections used to define it.

One could naturally ask what the maximum possible length of an element in WF is and
also which elements can attain this length. This is answered by the following lemma.

Lemma 2.17. Assume F is a root system with positive system F+ ⇢ F and simple system D ⇢
F+. For any w 2 WF we have `(w) 6 |D|. Furthermore, there exists a unique element w0 2 WF

satisfying `(w0) = |D|. We call w0 the longest element of WF

Exercise 2.18. Prove that w2
0 = 1.

If F is a root system and D ⇢ F is a simple system then |D| is an invariant of the root
system called the rank of the root system (this follows from Theorem 2.12). We now investi-
gate the crystallographic condition (R4) in Definition 2.6, which we will see is surprisingly
restrictive. Firstly, let us note that (R4) is equivalent to the statement hb, ai 2 Z for all
a, b 2 F. If q is the angle between two roots a, b 2 F then the cosine of the angle q is given
by the formula

(a, b) = |a| · |b| cos q

where |a| denotes the length of the root. In particular we obtain

hb, ai = 2(b, a)
(a, a)

= 2
|b|
|a| cos q ) ha, bihb, ai = 4 cos2 q,

which implies ha, bihb, ai is a non-negative integer.

Exercise 2.19. Assume a, b 2 F are two roots such that a 6= ±b and |b| > |a|. Prove that
Table 2.1 gives all possibilities for the values ha, bi, hb, ai, q and |b|2/|a|2 (where q is the
angle between a and b). (Hint: use the fact that 0 6 cos2 q 6 1 and ha, bi, hb, ai have like
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A1 ⇥ A1 A2

a

b

a

b

C2 G2

a

b

a

b

Figure 1: Rank 2 Root Systems

sign.)

Exercise 2.20. Check that each collection of vectors (in R2) described in Figure 1 defines a
root system and prove that these are the only root systems of rank 2 up to isomorphism.
Here D = {a, b} denotes a simple system for the root system F ⇢ R2. Describe the Weyl
groups of these root systems up to isomorphism.

We wish to now describe the classification of root systems. However, to do this we need
to introduce the following notion.

Definition 2.21. A root system F is called decomposable (or reducible) if there exist proper
non-empty subsets F1, F2 ⇢ F such that F = F1 [F2 and (a, b) = 0 for all a 2 F1 and
b 2 F2. Conversely we say F is indecomposable (or irreducible) if F is not decomposable.

Example 2.22. The root systems A2, C2 and G2 of Exercise 2.20 are indecomposable, while
the root system A1 ⇥ A1 is decomposable.

Exercise 2.23. Prove that any decomposition F = F1 [F2 of a root system F (as in Defini-
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tion 2.21) is necessarily disjoint, i.e. F1 \F2 = ?.

Exercise 2.24. Let F be a root system with simple system D ⇢ F. Show that F is inde-
composable if and only if D cannot be written as a disjoint union D1 t D2 of two proper
non-empty subsets such that (a, b) = 0 for all a 2 D1 and b 2 D2. (Hint: use Exercise 2.5
and Theorem 2.12).

Proposition 2.25. Let F ⇢ V be a decomposable root system with basis D. By the previous two
exercises there exists a decomposition D = D1 t D2 of D such that D1 and D2 are disjoint. Let
Vi = RDi and Fi = F \Vi for i 2 {1, 2} then the following hold.

(i) Fi ⇢ Vi is a root system with basis Di for i 2 {1, 2} and F = F1 tF2 is a decomposition
of F.

(ii) WF = WF1 ⇥WF2 where we consider any element of WFi , for i 2 {1, 2}, as a reflection
on V.

This proposition shows that to classify root systems and Coxeter groups it suffices to
classify the indecomposable root systems and their corresponding Coxeter groups. The
classification statement for indecomposable root systems is most effectively done through
the notion of a Dynkin diagram.

Definition 2.26. Assume F is a root system with simple system D of cardinality n. Recall
from Exercise 2.19 that for any two roots a, b 2 F we have ha, bihb, ai 2 {0, 1, 2, 3}. We
define the Dynkin diagram of F to be the graph having n-vertices, labelled by the elements
of D, such that distinct a, b 2 D are joined by ha, bihb, ai number of edges. Furthermore,
if a, b 2 D are of different lengths then we affix an arrow to the diagram pointing towards
the shorter of the two roots.

Example 2.27. The Dynkin diagrams of the rank 2 root systems given in Exercise 2.20 are
as follows.

A1 ⇥ A1 A2 C2 G2

a b a b a b a b

Exercise 2.28. Prove the Dynkin diagram is an invariant of a root system. In other words,
it does not depend upon the choice of simple system used to define it. Furthermore, show
that a root system is uniquely determined by its Dynkin diagram up to isomorphism.

Exercise 2.29. Show that a root system is indecomposable if and only if its Dynkin diagram
is connected.
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With the Dynkin diagram we may now give the elegant classification of indecomposable
root systems.

Theorem 2.30. If F is an indecomposable root system then its Dynkin digram is contained in the
following list.

An

Bn

Cn

Dn

E6

E7

E8

F4

G2

Furthermore, every connected graph on this list arises as the Dynkin diagram of some indecompos-
able root system.

The indecomposable root systems are described in many places, for example in the
plates of [Bou02]. We will not describe all such root systems here but we will describe the
infinite family An�1 as an example.

Example 2.31. Let {e1, . . . , en} be the standard basis of Rn then we have

F = {ei � ej | 1 6 i, j 6 n and i 6= j}

is a root system of the vector space V = {(x1, . . . , xn) | Ân
i=1 xi = 0} ⇢ Rn. A positive and

simple system of roots for F may be given by

F+ = {ei � ej | 1 6 i < j 6 n}
D = {ei � ei+1 | 1 6 i 6 n� 1}.

For each 1 6 i 6 n� 1 let ai denote the simple root ei � ei+1. As (ei, ej) = dij (the Kronecker
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delta) it is easy to check that

hai, ajihaj, aii =

8
>>><

>>>:

0 if |i� j| > 1,

1 if |i� j| = 1,

4 if i = j.

In particular, F is an indecomposable root system of type An�1.
For all 1 6 i 6 n let us denote by si 2 WF the reflection corresponding to the simple

root ai. It is easy to check that for any 1 6 k 6 n we have

si(ek) =

8
>>><

>>>:

ei+1 if k = i

ei if k = i + 1

ek if k 62 {i, i + 1}.

In particular, si acts on the standard basis as the transposition (i, i + 1). Therefore, WF is
isomorphic to the symmetric group Sn.

� Root Data

Definition 2.32. We say the quadruple Y = (X, F, qX, qF) is a root datum if the following
conditions are satisfied.

(i) Both X and qX are free abelian groups of finite rank. Furthermore there exists a non-
degenerate bilinear map h�,�i : X⇥ qX ! Z such that c 7! hc,�i and g 7! h�, gi
give isomorphisms X ! Hom( qX, Z) and qX ! Hom(X, Z), (i.e. h�,�i is a perfect
pairing).

(ii) F and qF are finite subsets of X and qX respectively. Furthermore there exists a
bijection F! qF denoted by a 7! qa, such that ha, qai = 2.

(iii) For every a 2 F the maps sa : X ! X and sqa : qX ! qX defined by

sa(c) = c� hc, qaia for all c 2 X,

sqa(g) = g� ha, giqa for all g 2 qX,

are such that sa(F) = F and sqa(qF) = qF.

Exercise 2.33. Let (X, F, qX, qF) be a root datum. Show that the free abelian groups X and
qX have the same finite rank.

Exercise 2.34. Show that (X, F, qX, qF) is a root datum if and only if ( qX, qF, X, F) is a root
datum.
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Assume now that Y = (X, F, qX, qF) is a root datum. As X, qX are abelian groups they
are also Z-modules hence we may form the tensor products of Z-modules RX = R⌦Z X
and R qX = R ⌦Z

qX. The tensor products RX and R qX are real vector spaces and we may
identify X and qX with their natural images in these spaces. Typically we will suppress the
tensors when writing elements of RX and R qX. We may easily extend the bilinear map in
Definition 2.32 to a non-degenerate bilinear map RX⇥R qX ! Z by setting

hr1c, r2gi = r1r2hc, gi for all r1, r2 2 R, c 2 X and g 2 qX.

Extending linearly we may consider the automorphisms sa, sqa of X and qX to be elements
of GL(RX) and GL(R qX)

Exercise 2.35. Check that the sub F ✓ V and qF ✓ qV are root systems where V ✓ RX and
qV ✓ R qX are the subspaces spanned by F and qF.

Exercise 2.36. Construct a WF-invariant positive definite symmetric bilinear form (·, ·) :
RX⇥RX ! R.

The map sa 7! sqa defines an isomorphism WF ! WqF between the corresponding Weyl
groups and we call WF the abstract Weyl group of the root datum. By the above exercise there
exists a WF-invariant positive definite symmetric bilinear form (·, ·) : RX⇥RX ! R which
we assume fixed. The sa are then Euclidean reflections with respect to this metric and are
given by the formula in (2.1). In particular, for any root a we have h�, qai = 2(a, a)�1(�, a).
This form gives an identification of R qX as the dual vector space of RX. It follows that
under this identification we have

qa =
2a

(a, a)
, (2.2)

(see [Bou02, Ch. VI - §1 - no. 1 - Lemma 2]).

Remark 2.37. Observe that the situation here is slightly more flexible than when we con-
sidered root systems. In particular, the identification h�, qai = 2(a, a)�1(�, a) holds only
for the given coroot qa 2 qF and does not make sense for other elements of qX. Hence, the
bilinearity of h�,�i does not contradict Exercise 2.2.

Example 2.38. Our principal example of a root datum (X, F, qX, qF) is the following. Let
e1, . . . , en be the standard basis of Rn for some n > 0 then we set

X = qX = Ze1 � · · ·�Zen ⇢ Rn,

F = qF = {ei � ej | 1 6 i, j 6 n and i 6= j}.

The set F is the root system of type An�1 described in Example 2.31. We define our non-
degenerate bilinear map by setting hei, eji = dij for all 1 6 i, j 6 n and extending linearly.
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The bijection F 7! qF is simply the identity and it is readily checked that ha, qai = 2 for all
a 2 F. We leave the verification of the third condition in Definition 2.32 as an exercise.

Let Y0 = (X0, F0, qX0, qF0) be another root datum and assume j 2 Hom(X0, X) is a ho-
momorphism of abelian groups. Precomposing with j gives an induced homomorphism
Hom(X, Z) ! Hom(X0, Z). By identifying Hom(X, Z) and Hom(X0, Z) with qX and qX0,
using the respective perfect pairings, we obtain a homomorphism h�, gi 7! h�, gi � j.

Definition 2.39. For any j 2 Hom(X0, X) we define qj 2 Hom( qX, qX0) to be the unique
homomorphism satisfying h�, qj(g)i = h�, gi � j. We call qj the dual of j. Equivalently we
have qj is the unique homomorphism satisfying hj(c), gi = hc, qj(g)i for all c 2 X0 and
g 2 qX.

We have a similar duality map Hom( qX, qX0) ! Hom(X0, X), also denoted j 7! qj, and
the composition of these dualities satisfies qqj = j.

Exercise 2.40. Prove that j 2 Hom(X0, X) is surjective (resp. injective) if and only if its
dual qj 2 Hom( qX, qX0) is injective (resp. surjective). In particular, j is an isomorphism if
and only if qj is an isomorphism.

Remark 2.41. It is easily seen that the automorphism sqa of qX in Definition 2.32 is the auto-
morphism dual to sa, thus we may often denote this by qsa.

Definition 2.42. We say j : Y0 ! Y is an isomorphism of root data if the following conditions
hold:

• j : X0 ! X is an isomorphism of abelian groups.

• the restriction j|F0 determines a bijection F0 ! F and qj(qa) = ~j(a) for all a 2 F0.

Let us choose a positive system of roots F+ ⇢ F then, by Theorem 2.12, this determines
a unique system of simple roots D ⇢ F+. Let qD be the image of D under the bijection
F! qF then by [Bou02, Ch. VI - §1 - no. 5 - Remark (5)] and (2.2) we have qD is a system of
simple roots for qF, hence qD determines a unique system of positive roots qF+ ⇢ qF.

We call the following subspaces of RX and R qX

L = {c 2 RX | hc, qai 2 Z for all a 2 F}
qL = {g 2 R qX | ha, gi 2 Z for all qa 2 qF},

the weight lattice and coweight lattice of Y, (their elements are called weights and coweights
respectively). If RX is the R-span of F then we have the following sequence of subspace
inclusions ZF ✓ X ✓ L where ZF is the Z-span of the roots (similarly we have the
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inclusions Z qF ✓ qX ✓ qL). The two quotient spaces

P = L/ZF qP = qL/Z qF

have the structure of a finite abelian group and are isomorphic, (see [Bou02, Ch. VI - §1 -
no. 9]). We call this group the fundamental group of F, (this should not be confused with
L/X which is also called the fundamental group of Y).

Example 2.43. Let Y be the root datum of Example 2.38 whose root system F is of type
An�1. The fundamental group P of F is a cyclic group of order n.

Exercise 2.44. Let Y be as in Example 2.38. Prove that the fundamental group of Y (i.e. the
quotient L/X) is non-trivial.

3. Algebraic Groups

� Connected Reductive Algebraic Groups

We will assume throughout that G is a non-empty algebraic set. By this, we mean there
exists a set of polynomials I(G) ✓ K[X1, . . . , Xn] such that

G = {(x1, . . . , xn) 2 Kn | f (x1, . . . , xn) = 0 for all f 2 I(G)}.

The set of polynomials is an ideal, called the vanishing ideal of G, which satisfies

I(G) = { f 2 K[X1, . . . , Xn] | f (x) = 0 for all x 2 G}.

We will denote by K[G] the affine algebra of G which is the quotient K[X1, . . . , Xn]/I(G).
We also recall that the set G is endowed with a topology called the Zariski topology.

Definition 3.1. If G ✓ Kn and H ✓ Km are non-empty algebraic sets then we say j :
G ! H is a regular map (or morphism of varieties) if there exist polynomials f1, . . . , fm 2
K[X1, . . . , Xn] such that

j(x) = ( f1(x), . . . , fm(x))

for all x 2 G. We say j is an isomorphism if j is bijective and its inverse j�1 is also a regular
map.

A particular special case is when m = 1 and H = K, hence j(x) = f (x) for some
polynomial f 2 K[X1, . . . , Xn]. Let f̄ = f + I(G) be the residue class of f in the affine
algebra K[G] then the residue class of f is uniquely determined by j. Conversely any
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residue class f̄ gives rise to a unique morphism of varieties G ! K. In this way we may
identify K[G] with all regular maps G ! K, hence we sometimes call K[G] the algebra of
regular functions.

Given any regular map j : G! H we have j induces a K-algebra homomorphism

j⇤ : K[H]! K[G]

given by j⇤(ḡ) = ḡ � j. The assignment j 7! j⇤ is contravariant. Before introducing the
notion of an algebraic group we recall the following important result concerning regular
maps.

Proposition 3.2. Assume G ✓ Kn and H ✓ Km are non-empty affine algebraic sets. Then the
assignment j 7! j⇤ defines a bijection

{regular maps G! H} ⇠�! {K-algebra homomorphisms K[H]! K[G]}

Furthermore, the following hold.

(i) j is dominant (i.e. j(G) = H) if and only if j⇤ is injective.

(ii) j is a closed embedding (i.e. j(G) ✓ H is closed and the restriction of j to G defines
an isomorphism G! j(G)) if and only if j⇤ is surjective.

(iii) j is an isomorphism if and only if j⇤ is an isomorphism of K-algebras.

Definition 3.3. We say G is an affine algebraic group if G is a non-empty algebraic set en-
dowed with a group structure such that the multiplication and inversion maps

G⇥G! G G! G

(x, y)! xy x! x�1

are regular. Note that the topology on G ⇥ G is again the Zariski topology and not the
product topology.

Remark 3.4. Such a group, as defined above, is often called a linear algebraic group because
we have defined it using an embedding into affine space. The term affine algebraic group
is typically reserved for the case where G is an abstract affine variety (see [Gec03, §2.1]).
However, the two definitions are equivalent as for any affine algebraic group G there exists
a closed embedding G ,! GLn(K) for some n.

We will denote by Mn(K) the set of all n⇥ n matrices whose entries are in K. We will
consider this as an algebraic set by identifying it with the affine space Kn2 , its affine algebra
is simply K[Xij | 1 6 i, j 6 n].
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Example 3.5. Recall the determinant polynomial defined by

det = Â
r2Sn

sgn(r)X1r(1) · · · Xnr(n) 2 K[Xij | 1 6 i, j 6 n]

where Sn is the symmetric group on n letters and sgn : Sn ! {±1} is the sign character.
With this in hand we may define our principal example of an affine algebraic group, namely
the general linear group GLn(K). To see that this is an algebraic set we identify GLn(K)

with
{(A, y) 2 Mn(K)⇥K | y det(A)� 1 = 0}

under the natural projection map (A, y) 7! A. Specifically GLn(K) ✓ Kn2+1 is defined by
the prime ideal hY det�1iE K[Xij, Y | 1 6 i, j 6 n].

Example 3.6. A simpler example is also given by the special linear group

SLn(K) = {A 2 Mn(K) | det(A)� 1 = 0},

whose vanishing ideal is hdet�1iE K[Xij | 1 6 i, j 6 n].

We now define some subgroups of an affine algebraic group G which play an important
role in describing the structure of the group.

• The connected component G� of G is the unique closed normal subgroup of G
whose index [G : G�] is finite.

• The radical R(G) of G is the unique maximal closed connected solvable normal
subgroup of G.

• The unipotent radical Ru(G) of G is the unique maximal closed connected normal
subgroup of G, all of whose elements are unipotent.

With these subgroups to hand we may now make the following important definitions.

Definition 3.7. If G is an affine algebraic group then we say G is:

• connected if G = G� (or equivalently that it is connected in the Zariski topology),

• reductive if Ru(G) = {1},

• semisimple if R(G) = {1},

• simple if G is connected and contains no proper non-trivial closed connected normal
subgroups.
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Remark 3.8. Note that a simple algebraic group may contain a proper non-trivial closed
normal subgroup but it must necessarily be finite. For example, the special linear group
SLn(K) is a simple algebraic group but the centre Z(SLn(K)) is a non-trivial closed normal
subgroup whenever n is not a power of p.

An affine algebraic group H is called a torus if it is isomorphic to a direct product
K⇥ ⇥ · · ·⇥K⇥ with a finite number of factors. It is called unipotent if all its elements are
unipotent. With this in hand we may describe the internal structure of an affine algebraic
group G by the following chain of normal subgroups.

G G� R(G) Ru(G) {1}finite semisimple torus unipotent

Here the labels describe the quotients. For example G/G� is a finite group, G�/R(G)

is semisimple, etc. As the unipotent radical is contained in the radical we can see that
any semisimple algebraic group is reductive but the converse statement is not true. The
structure of a connected reductive algebraic group is even simpler than the above diagram
suggests. In particular, we have the following result.

Proposition 3.9. Assume G is a connected reductive algebraic group. Let Z(G) be the centre and
[G, G] be the derived subgroup then the following hold:

(i) R(G) = Z(G)� is a torus and [G, G] is semisimple

(ii) R(G) \ [G, G] is finite

(iii) G = [G, G] · Z(G)� (this is sometimes called an almost direct product).

Example 3.10. Our principal example of a connected reductive algebraic group is the gen-
eral linear group G = GLn(K). Its derived subgroup is the special linear group SLn(K)

and its centre is
R(G) = Z(G) = {lIn | l 2 K⇥} ⇠= K⇥,

where In is the n⇥ n identity matrix. Note that the centre is connected and non-trival, so
G is not semisimple. The intersection between the centre and the derived subgroup is

Z(G) \ [G, G] = {lIn | l 2 K⇥ and ln = 1} ⇠= K⇥,

which is a cyclic group of order n/ gcd(p, n) (this is the centre of SLn(K)).

Let H 6 G be a closed subgroup of an affine algebraic group G then we say H is a
maximal torus of G if it is maximal amongst all subtori of G with respect to inclusion. We
say H is a Borel subgroup if it is a maximal closed connected solvable subgroup of G. The
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Borel subgroups of a connected reductive algebraic group play a key role in describing
the finer structure theory of such groups. We recall the following facts concerning Borel
subgroups and maximal tori.

Proposition 3.11. Let G be an affine algebraic group then the following hold.

(i) Every maximal torus G is contained in a Borel subgroup of G.

(ii) All Borel subgroups of G are conjugate and furthermore all maximal tori of G are conjugate.

(iii) If G is connected then every Borel subgroup B is self-normalising, i.e. NG(B) = B.

Example 3.12. Assume G = GLn(K) then the following are respectively a maximal torus
and Borel subgroup of G

T =

8
>><

>>:

2

664

? 0
. . .

0 ?

3

775

9
>>=

>>;
B =

8
>><

>>:

2

664

? · · · ?
. . . ...

0 ?

3

775

9
>>=

>>;
.

In other words T is the subgroup of diagonal matrices and B is the subgroup of upper
triangular matrices.

We will assume from now on that G is a connected reductive algebraic group.

� The Lie Algebra and the Roots

By Proposition 3.11 we may fix a maximal torus T0 6 G and a Borel subgroup B0 6 G
such that B0 contains T0. We wish to define the root datum of G relative to T0. As above,
this will be a quadruple

Y(T0) = (X(T0), F(T0), qX(T0), qF(T0))

where X(T0) = Hom(T0, K⇥) and qX(T0) = Hom(K⇥, T0) (recall that homomorphisms are
those of algebraic groups). To define the sets F(T0) ⇢ X(T0) and qF(T0) ⇢ qX(T0) we will
need to introduce the Lie algebra of G.

Definition 3.13. Assume g is a K-vector space with a binary operation [�,�] : g⇥ g ! g.
We say g is a Lie algebra (over K) with Lie bracket [�,�] if the following hold:

(i) [ax + by, z] = a[x, z] + b[y, z] and [z, ax + by] = a[z, x] + b[z, y] for all x, y, z 2 g

and a, b 2 K.

(ii) [x, x] = 0 for all x 2 g.
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(iii) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 for all x, y, z 2 g.

Exercise 3.14. Check that the set of all matrices Mn(K) is a Lie algebra with the Lie bracket
given by [x, y] = xy� yx. We call this the general linear Lie algebra gln(K).

In this subsection we wish to show that, in analogy with Lie groups, every affine al-
gebraic group has a corresponding Lie algebra in its tangent space. With this in mind,
we define for every point p 2 Kn a map dp : K[X1, . . . , Xn] ! K[X1, . . . , Xn] called the
differential at p by setting

dp( f ) =
n

Â
i=1

∂ f
∂Xi

(p)Xi.

Assume I(G)E K[Xij | 1 6 i, j 6 n] is the vanishing ideal of G ✓ Mn(K) then for any
x 2 G we define the tangent space of G at x to be

Tx(G) = {v 2 Kn | dx( f )(v) = 0 for all f 2 I(G)} ✓ Mn(K).

Proposition 3.15.

(i) Let 1 2 G ✓ Mn(K) be the identity element then the tangent space T1(G) ✓ Mn(G) is
a Lie subalgebra of gln(K). In other words the Lie bracket [x, y] = xy� yx defines a Lie
algebra structure on T1(G). We call g := T1(G) the Lie algebra of G.

(ii) If j : G ! H is a homomorphism of algebraic groups then the differential d1(j) :
T1(G) ! T1(H) is a homomorphism of Lie algebras (i.e. d1(j) is a K-linear map pre-
serving the Lie bracket).

For any x 2 G we denote by Innx : G ! G the corresponding inner automorphism
defined by Innx(g) = xgx�1. Using Proposition 3.15 we have the corresponding differential
Adx := d1(Innx) is an automorphism of the Lie algebra. More generally the map x 7! Adx

defines a rational representation of the algebraic group

Ad : G! GL(g)

called the adjoint representation of G. It is through the adjoint representation that we may
identify the roots of the algebraic group G with respect to T0. Specifically for any a 2 X(T0)

we define the corresponding weight space on the Lie algebra to be

ga = {v 2 g | (Ad t)(v) = a(t)v for all t 2 T0} ✓ g.

It is clear to see that we obtain a vector space decomposition of the Lie algebra into its
corresponding weight spaces, i.e. g = �a2X(T0)ga. We now have the set of roots is given by

F(T0) = {a 2 X(T0) | a 6= 0 and ga 6= 0}.



18

Example 3.16. Let G = GLn(K) then we will take T0 (resp. B0) to be the maximal torus
of diagonal matrices (resp. Borel subgroup of upper triangular matrices) defined in Exam-
ple 3.12. As one would expect the Lie algebra g of GLn(K) is simply the general linear
Lie algebra gln(K). To prove this one needs additional dimension arguments such as those
used in [Hum75, §9.3 - Examples] which we will not discuss here. For each 1 6 i, j 6 n we
denote by Eij the elementary matrix all of whose entries are 0 except the entry in the ith
row and jth column which is 1. It is clear that we have the following decomposition of g as
a vector space

gln(K) =
nM

i,j=1
KEij, (3.1)

where KEij dentoes the K-span of Eij.
We will denote by ei : T0 ! K⇥ the homomorphism given by ei(t) = ti where t 2 T0

is the diagonal matrix diag(t1, . . . , tn). These homomorphisms form a basis for X(T0) as
a free abelian group. According to [Hum75, §10.3 - Lemma A] we have Adx(y) is simply
the matrix product xyx�1 for all x 2 G and y 2 gln(K). Hence, for any diagonal matrix
t = diag(t1, . . . , tn) 2 T0 we have

(Ad t)(Eij) = tEijt�1 = (tit�1
j )Eij = (ei � ej)(t)Eij,

for all 1 6 i, j 6 n. It is clear that ei � ej is non-zero whenever i 6= j and, by the above
calculation, the corresponding weight space gei�ej is also non-zero as it contains Eij.

For each 1 6 i 6 n it is clear that we have Eii is contained in the 0-weight space g0 but
as Eij 62 g0 whenever i 6= j we must have

g0 =
nM

i=1
KEii,

by comparing with the decomposition given in (3.1). In particular, this shows that the roots
of G with respect to T0 are given by

F(T0) = {ei � ej | 1 6 i, j 6 n and i 6= j}.

Hence, F(T0) is simply the root system of type An�1 described in Example 2.31.

� The Coroots and Chevalley’s Classification Theorem

In the previous subsection we have used the Lie algebra to define the roots of G with
respect to T0. To complete the definition of the root datum of G we must give a definition
of the set of coroots qF(T0). To do this we need the following result.

Theorem 3.17. Let a 2 F(T0) be a root then the following hold.
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(i) There exists a morphism xa : K+ ! G such that xa is an isomorphism onto its image
Xa := Im(xa) and txa(c)t�1 = xa(a(t)c) for all c 2 K+ and t 2 T0. If x0 : K+ ! G
is another such isomorphism with these properties then there exists a unique l 2 K⇥ such
that x0(c) = xa(lc) for all c 2 K+. In particular, Xa is uniquely determined.

(ii) The subgroup hXa, X�ai 6 G is isomorphic to either SL2(K) or PGL2(K). In particular,
there exists a surjective homomorphism

ja : SL2(K)! G

such that for a suitable normalisation of xa and x�a we have

ja

"
1 c
0 1

#
= xa(c) ja

"
1 0
c 1

#
= x�a(c) ja

("
l 0
0 l�1

#����� l 2 K⇥
)

6 T0.

Furthermore

(a � ja)

 "
l 0
0 l�1

#!
= l2

for all l 2 K⇥.

For each root a 2 F(T0) we call the subgroup Xa 6 G of Theorem 3.17 the root subgroup
of a. With this in place we may now define the coroots of G with respect to T0. Specifically,
given a root a 2 F(T0) we define the corresponding coroot qa 2 qF(T0) by setting

qa(l) = ja

"
l 0
0 l�1

#
2 T0

for all l 2 K⇥.
Although we have now defined all the ingredients in the root datum Y(T0) we have

not defined all the ingredients given in Definition 2.32. In particular, we define the non-
degenerate pairing h�,�i : X(T0) ⇥ qX(T0) ! K as follows. Given c 2 X(T0) and g 2
qX(T0) we have their composition c � g is contained in Hom(K⇥, K⇥). In particular there
exists an integer mc,g 2 Z such that (c � g)(l) = lmc,g . We then define h�,�i by setting
hc, gi = mc,g.

Exercise 3.18. Prove that the quadruple Y(T0) = (X(T0), F(T0), qX(T0), qF(T0)) is a root
datum (as defined in Definition 2.32) where the perfect pairing h�,�i : X(T0)⇥ qX(T0) !
K is defined as above.

Exercise 3.19. Assume T 6 G is a maximal torus of G and let Y(T) be the root datum of
G defined with respect to T. Prove that Y(T) and Y(T0) are isomorphic as root data (in
the sense of Definition 2.42). In particular, up to isomorphism, the root datum Y(T0) of G
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is independent of the choice of maximal torus T0. (Hint: use Proposition 3.11)

So far we have not used our fixed Borel subgroup B0 containing T0 in describing the
roots of G. However, we may use the Borel subgroup to obtain a positive system of roots
by setting

F+(T0) = {a 2 F(T0) | Xa 6 B0}.

By Theorem 2.12 this determines a unique set of simple roots D(T0) for F(T0). The fol-
lowing shows that, conversely, the Borel subgroup is determined by the system of positive
roots

B0 = hT0, Xa | a 2 F+(T0)i.
This gives us a correspondence between positive systems of F(T0) and Borel subgroups of
G containing T0.

We call the quotient group WG(T0) = NG(T0)/T0 the Weyl group of G defined with
respect to T0. Note that for any other choice of maximal torus T of G the Weyl groups
WG(T0) and WG(T) are isomorphic (see Proposition 3.11). For each w 2 WG(T0) we
assume ẇ 2 NG(T0) is a fixed representative of w and given t 2 T0 we define tw to be the
element ẇ�1tẇ. This gives an action of WG(T0) on T0 which induces an action of WG(T0)

on the character and cocharacter groups given by

(w · c)(t) = c(tw) for all c 2 X, w 2 W, t 2 T0,

( qw · g)(t) = g(l)w for all g 2 qX, w 2 W, l 2 K⇥.

Note that the following exercise justifies our notation.

Exercise 3.20. Prove that qw : qX(T0)! qX(T0) is the dual of w : X(T0)! X(T0) in the sense
of Definition 2.39.

Exercise 3.21. For each root a 2 F(T0) let us define

ṅa = ja

"
0 1
�1 0

#
.

Show that ṅa 2 NG(T0).

Using Exercise 3.21 we obtain for each root a 2 F(T0) a corresponding element of the
Weyl group na 2WG(T0) (i.e. by taking the image of ṅa in the quotient). With this we may
give the following result relating the Weyl group of G with the abstract Weyl group of its
underlying root datum.

Proposition 3.22. Let G be a connected reductive algebraic group with maximal torus T0 and let
Y(T0) be the root datum of G defined with respect to T0. For each root a 2 F(T0) the action
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of the element na on both X(T0) and qX(T0) stabilises the sets of roots and coroots respectively.
Furthermore the map na 7! sa defines an isomorphism WG(T0) ! WF(T0) between the Weyl
group of G and the abstract Weyl group of its underlying root datum.

One of the most startling things about connected reductive algebraic groups is that the
relatively simple combinatorial data introduced in Section 2.2 completely determines the
group up to isomorphism. More precisely, we have the following.

Theorem 3.23 (Chevalley). The map G 7! Y(T0) determines a bijective correspondence

(
isomorphism classes of connected

reductive algebraic groups over K

)
 ! {isomorphism classes of root data}.

As we have seen above, the root subgroups play an important role in describing the
structure of a connected reductive algebraic group. To make locating these subgroups
slightly easier we recall the following lemma.

Lemma 3.24. Assume a 2 F(T0) is a root then Sa := (Ker a)� is a proper subtorus of T0. If Ga

is the centraliser CG(Sa) then the root subgroups Xa and X�a are minimal 1-dimensional unipotent
subgroups of Ga normalised by T0.

Example 3.25. In Example 3.16 we described the roots of GLn(K). We now complete this
example by describing the full root datum of G = GLn(K). Let a = ei � ej be the root of G
described in Example 3.16 then a simple calculation shows that

Sa = {diag(t1, . . . , tn) 2 T0 | ti = tj} Ga =

8
>>>><

>>>>:

?
?

?
?

3

77775

2

66664

9
>>>>=

>>>>;

Specifically, assume A = Ân
k,`=1 ak`Ek` 2 Ga where Ek` is an elementary matrix (as in

Example 3.16) and ak` 2 K is a scalar, then we have ak` = 0 unless k = ` or (k, `) 2
{(i, j), (n + 1� i, n + 1� j)}. Assume now that i < j. Let In be the n⇥ n identity matrix
then one can easily check that the morphism ja is an isomorphism given by

ja

"
1 c
0 1

#
= In + cEij ja

"
1 0
c 1

#
= In + cEn+1�i,n+1�j,

for all c 2 K+. If i > j then ja is obtained from the above description by exchanging the
roles of the upper and lower uni-triangular matrices in SL2(K).

Under the assumption that i > j we have the root subgroup Xa is contained in our fixed
Borel subgroup B0 (consisting of upper triangular matrices). In particular, we obtain that
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the system of positive roots F+(T0) determined by B0 is given by

F+(T0) = {ei � ej | 1 6 i < j 6 n + 1}.

For each 1 6 k 6 n let us denote by qei 2 qX(T0) the homomorphism given by

qek(l) = diag(1, . . . , 1, l, 1, . . . , 1),

where l 2 K⇥ is in the kth position. Using the description of the isomorphism ja given
above we see that the coroot corresponding to a is given by

qa(l) = ja

"
l 0
0 l�1

#
=

1

l

l�1

1

3

77777777775

2

66666666664

= (qei � qej)(l)

for all l 2 K⇥. With this description one easily confirms that the root system of GLn(K) is
isomorphic to the root datum described in Example 2.38.

With Theorem 3.23 in hand it seems sensible to ask if some of the group theoretic
definitions made at the beginning of the section can be recast in terms of root data. The
following deals with some of these questions.

Lemma 3.26. Assume G is a connected reductive algebraic group with root datum Y then the
following hold.

(i) G is semisimple if and only if RX is the R-span of F.

(ii) G is simple if and only if F is indecomposable.

Conversely, we may also make definitions using the root datum. For example, recall
that if Y is the root datum of G then one has the weight lattice L of the root datum
defined by the root system. Assume G is semisimple then we have a sequence of inclusions
ZF ✓ X ✓ L.

Definition 3.27. We say a connected semisimple algebraic group G is simply connected if
X = L and adjoint if X = ZF.

Remark 3.28. Equivalently we have G is simply connected if qX = Z qF and adjoint if qX = qL.
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Exercise 3.29. Show that for each root system F there is a unique simply connected group
and adjoint group up to isomorphism.

Exercise 3.30. Let us assume that p = char(K) is odd then for n > 0 we define two invert-
ible matrices

Qn =

0 0 1
0

0
1 0 0

3

7775

2

6664 2 Mn(K) Wn =

"
0 Qn

�Qn 0

#
2 M2n(K).

With these matrices we may define the corresponding orthogonal and symplectic groups to be

On(K) = {A 2 Mn(K) | ATQn A = Qn}
Sp2n(K) = {A 2 M2n(K) | ATWn A = Wn}.

We additionally define the special orthgonal group to be SOn(K) = On(K) \ SLn(K). It is
easy to verify that these are algebraic groups. The special linear, special orthogonal and
symplectic groups are all connected reductive algebraic groups. Assume G is one of these
groups then we have the corresponding Lie algebra is given by

g =

8
>>><

>>>:

{A 2 Mn(K) | tr(A) = 0} if G = SLn(K)

{A 2 Mn(K) | ATQn + Qn A = 0} if G = SOn(K)

{A 2 M2n(K) | ATWn + Wn A = 0} if G = Sp2n(K),

(see [Gec03, Theorem 1.5.13]).
Let Ḡ be GLn(K) (resp. GL2n(K)) if G is SLn(K) or SOn(K) (resp. Sp2n(K)) and let

T̄0 and B̄0 be the maximal torus and Borel subgroup of Ḡ consisting of diagonal matrices
and upper triangular matrices respectively. Then T0 := T̄0 \ G and B0 = B̄0 \ G are
respectively a maximal torus and Borel subgroup of G (see Theorem 1.7.4 and Proposition
3.4.6 of [Gec03]). Recall from [Hum75, §10.3 - Proposition] that, as in the case of the general
linear group, we have Adx(y) is simply the matrix product xyx�1 for all x 2 G and y 2 g.

Using this, determine the root datum of G. (Hint: use Lemmas 1.5.9, 1.5.10 and 1.5.11
of [Gec03].) Show that the root system of G is of type An�1, Bn, Cn or Dn if G is SLn(K),
SO2n+1(K), Sp2n(K) or SO2n(K) respectively. Furthermore show that SLn(K) and Sp2n(K)

are simply connected, SO2n+1(K) is adjoint and SO2n(K) is neither simply connected or
adjoint. Finally, show that SL2(K) = Sp2(K). (Hint: use Theorem 3.23.)

� Parabolic and Levi Subgroups

Definition 3.31. Assume F is a root system with corresponding Weyl group WF. We say
H 6 WF is a parabolic subgroup of WF if there exists a simple system D ⇢ F and a subset
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J ✓ D such that H is given by WJ = hsa | a 2 Ji.

Taking J to be D (resp. ?) in the definition we obtain that WF (resp. {1}) is a parabolic
subgroup. If D is a fixed simple system and H is a parabolic subgroup of WF then H is
conjugate to WJ for some unique J ✓ D (this follows from Theorem 2.12). After fixing a
simple system, we sometimes call the subgroups WJ standard parabolic subgroups.

Example 3.32. Let D ⇢ F+ ⇢ F be the root system of type An�1 described in Example 2.31.
Given 1 6 m 6 n� 1 we take J to be D \ {em � em+1} then WJ is simply the Young sub-
group of Sn isomorphic to Sm ⇥Sn�m. Iterating this procedure we see that any standard
parabolic subgroup of Sn is simply a Young subgroup isomorphic to Sm1 ⇥ · · ·⇥Smr for
some non-zero m1, . . . , mr 2 N satisfying m1 + · · ·+ mr = n.

We would like to use the definition of parabolic subgroups for Weyl groups to define
corresponding subgroups of connected reductive algebraic groups. To do this we will
need the Bruhat decomposition, which gives a decomposition of G in terms of the Borel
subgroup B0 and the Weyl group WG(T0).

Theorem 3.33 (Bruhat Decomposition). Assume G is a connected reductive algebraic group
with maximal torus and Borel subgroup T 6 B. If W = WG(T) is the corresponding Weyl
group then we have

G =
G

w2W
BẇB

where ẇ 2 NG(T) is a representative of w 2 W (note that this union is disjoint). Assume S ⇢ W
is the set of simple reflections determined by B. For any simple reflection s 2 S and any w 2 W we
have the multiplication of the corresponding double cosets is given by

(BṡB) · (BẇB) =

8
<

:
BṡẇB if `(sw) = `(w) + 1

BẇB t BṡẇB if `(sw) = `(w)� 1

A double coset BẇB of G is usually called a Bruhat cell while its closure BẇB is called
a Schubert cell. One can define an equivalence relation 6 on WG(T) by setting w 6 v if and
only if BẇB ✓ Bv̇B. The relation 6 turns out to be equivalent to the Bruhat ordering on the
Weyl group, which is defined as follows.

Definition 3.34. Assume v, w 2 WF and let w = s1 · · · sk be a reduced expression for w
with each si 2 S. We write v 6 w if v = si1 · · · sij for some 1 6 i1 < i2 < · · · < ij 6 k. In
other words, v occurs as a subexpression of w. We call 6 the Bruhat order on WF.

Exercise 3.35. Show that WF has a unique maximal and unique minimal element with
respect to the Bruhat ordering.
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Example 3.36. Assume F is a root system of type B2 = C2 then WF = ha, b | a2 = b2 =

(ab)4 = 1i is isomorphic to a dihedral group of order 8. The Bruhat order on WF is then
given by the following Hasse diagram.

1

a

b

ab

ba

aba

bab

abab

Exercise 3.37. Describe the Bruhat ordering on WF when F is of type A3 or B3.

We note that there are several equivalent ways to define the Bruhat order. With this
digression over with we now consider parabolic subgroups of algebraic groups.

Definition 3.38. A closed subgroup P of a connected affine algebraic group H is called a
parabolic subgroup if it contains a Borel subgroup of H.

Exercise 3.39. Prove that every parabolic subgroup P of a connected affine algebraic group
H is self normalising, i.e. NH(P) = P (Hint: use Proposition 3.11).

We will assume that the maximal torus and Borel subgroup used in Theorem 3.33 are
our fixed maximal torus and Borel subgroup T0 6 B0 (in particular W = WG(T0)). Given
a subset J ✓ D(T0) we define

PJ =
G

w2WJ

B0ẇB0,

to be the standard parabolic subgroup of G defined by J.

Exercise 3.40. Prove that PJ is a parabolic subgroup of G.

Proposition 3.41. Any parabolic subgroup of G is conjugate to a unique standard parabolic sub-
group of G.

This proposition shows that, as in the case of Weyl groups, the standard parabolic
subgroups of an algebraic group are exemplary of all parabolic subgroups. Also note that,
a corollary of the proposition is that for any I, J ✓ D(T0) we have PI = PJ implies I = J.

Example 3.42. Let G = GLn(K) and let T0 6 B0 be the maximal torus and Borel subgroup
defined in Example 3.12. Let J be the set of simple roots D(T0) \ {em � em+1} for some
1 6 m 6 n� 1 then we have

PJ =

("
A ?

0 B

#����� A 2 GLm(K), B 2 GLn�m(K)

)
.
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Iterating this procedure one easily shows that every standard parabolic subgroup of G is
of the form

PJ =

? ?

?

0 ?

?

3

77777775

2

66666664

Definition 3.43. An algebraic group H is said to have a Levi decomposition if there exists
a closed subgroup L 6 H such that H = L n Ru(H). We call L a Levi subgroup, or Levi
complement, of H.

Not all affine algebraic groups admit a Levi decomposition but it is clear that a reductive
algebraic group admits a Levi decomposition (because the unipotent radical is trivial).
Having said this, parabolic subgroups always have a Levi decomposition. For standard
parabolic subgroups a decomposition can be constructed in the following way. Given J ✓
D(T0) let us denote by

FJ = F \
 

Â
a2J

Za

!

the root subsystem generated by J. Setting F+
J = F+ \FJ we obtain a positive system of

roots for FJ and we define

LJ = hT0, Xa | a 2 FJi UJ = hXa | a 2 F+ \ F+
J i.

Exercise 3.44. Prove that LJ and UJ are subgroups of PJ .

Lemma 3.45. For any J ✓ D(T0) we have Ru(PJ) = UJ . Furthermore, PJ has a Levi decomposi-
tion given by PJ = LJ n UJ and LJ is a connected reductive algebraic group.

We call LJ a standard Levi subgroup of PJ . Sometimes we will say that a Levi subgroup L
of a parabolic subgroup of G is a Levi subgroup of G. In this situation we say LJ is a standard
Levi subgroup of G.

Example 3.46. Returning to Example 3.42 we have

LJ =

("
A 0
0 B

#����� A 2 GLm(K), B 2 GLn�m(K)

)
UJ =

("
Im ?

0 In�m

#)
.

In the general case of a standard parabolic subgroup of GLn(K) one obtains the Levi com-
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plement and unipotent radical to be

LJ =

?

? 0

0 ?

?

3

77777775

2

66666664

UJ =

I
I ?

0 I
I

3

77777775

2

66666664

respectively.

Although this is one Levi decomposition of the standard parabolic subgroup PJ , it is
not necessarily the only one. However, the Levi complement is uniquely determined by the
condition that it contains the maximal torus T0. In general we have the following general
result.

Lemma 3.47. Assume P 6 G is a parabolic subgroup and let T 6 P be a maximal torus of G then
there exists a unique Levi subgroup L 6 P which contains T. Furthermore, any two Levi subgroups
of P are conjugate by a unique element of Ru(P).

We end our discussion of parabolic and Levi subgroups by noting that the analogue of
Proposition 3.41 for Levi subgroups does not hold. In particular, there may exist subsets
I, J ✓ D(T0) such that LI and LJ are conjugate in G but I 6= J.

Exercise 3.48. Construct such an example. (Hint: use conjugation by elements of the Weyl
group WG(T0).)

� Conjugacy Classes and Centralisers

When trying to understand a group one of the first things to be done is to try and un-
derstand its conjugacy classes and centralisers of elements. The conjugacy classes of affine
algebraic groups have been well studied. In particular, the theory of unipotent conjugacy
classes is a rich area with many links to geometry. Here, we simply give some of the ideas
towards understanding the conjugacy classes of a connected reductive algebraic group.

Definition 3.49. We say x 2 GLn(K) is semisimple if it is a diagonalisable matrix and unipo-
tent if all its eigenvalues are 1.

Theorem 3.50 (Jordan decomposition). Assume H is an affine algebraic group and r : H !
GLn(K) is an embedding. For any element g 2 H there exists s, u 2 H such that g = su = us,
where r(s) is semisimple and r(u) is unipotent. Furthermore, the decomposition g = su = us is
independent of the choice of embedding r.
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Exercise 3.51. Show that any conjugate of a semisimple (resp. unipotent) element of an
affine algebraic group H is again semisimple (resp. unipotent).

For any element x 2 G we will write (x) = (x)G for the conjugacy class of G con-
taining x. We say a conjugacy class is semisimple (resp. unipotent) if it consists entirely
of semisimple (resp. unipotent) elements. Furthermore we say a conjugacy class is mixed
if it consists of elements that are neither semisimple nor unipotent. In light of the Jordan
decomposition we will focus our attention on semisimple and unipotent conjugacy classes.
The case of semisimple elements is dealt with by the following result.

Proposition 3.52. Assume G is a connected reductive algebraic group then the map t 7! (t)
induces a bijection

T0/WG(T0)! {semisimple conjugacy classes of G},

where T0/WG(T0) denote the WG(T0)-orbits of T0 under the action t 7! tw.

In particular, this result says that a representative for every semisimple conjugacy class
may be found in our fixed maximal torus T0.

Example 3.53. Consider the case where G = GL3(K). Firstly, every semisimple element of
G is conjugate to a diagonal matrix contained in T0. Using Proposition 3.52 we now need
only determine the orbits of WG(T0)-acting on T0. One easily checks that the orbit of an
element (t1, t2, t3) = diag(t1, t2, t3) 2 T0 is given by

• {(t1, t2, t3), (t1, t3, t2), (t2, t1, t3), (t2, t3, t1), (t3, t2, t1), (t3, t1, t2)} if t1, t2 and t3 are all
distinct.

• {(t1, t1, t3), (t1, t3, t1), (t3, t1, t1)} if t1 = t2 but t1 6= t3.

• {(t1, t1, t1)} if t1 = t2 = t3.

Observe that this generalises the usual fact that, in GLn(K), one has two semisimple ma-
trices are diagonalisable if and only if they have the same eigenvalues.

As every semisimple element of G is conjugate to some element of T0 one may hope
that the centraliser of an element in T0 can be described in terms of the roots of G relative
to T0.

Lemma 3.54 (Steinberg). Assume s 2 T0 is semisimple then we have

CG(s) = hT0, Xa, ẇ | a 2 F(T0), a(s) = 1 and sw = si,
CG(s)� = hT0, Xa | a 2 F(T0) and a(s) = 1i.
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In particular CG(s) is reductive and the root system of its connected component (relative to T0) is
given by F(s) = {a 2 F(T0) | a(s) = 1}.

Exercise 3.55. Assume G = GL3(K) then determine the centraliser of the semisimple ele-
ment diag(t1, t2, t3) 2 T0 (for all possible choices of ti). Show that the centraliser is always
connected and is a standard Levi subgroup of G.

Exercise 3.56. Construct a semisimple element of G = Sp4(K) whose centraliser is con-
nected but is not a Levi subgroup of G.

As the previous exercise illustrates, although F(s) is a root system in F(T0) it is not
necessarily the root system of a Levi subgroup. However, one may easily deduce from
Lemma 3.54, that (up to isomorphism) there exist only finitely many different centralisers
of semisimple elements in G. This proves promising when trying to construct a list of all
conjugacy classes of G. In particular, the Jordan decomposition shows us that any conju-
gacy class of G is a product (s)G · (u)CG(s) where (u)CG(s) is a unipotent conjugacy class
of CG(s). This means we may inductively compute the conjugacy classes and centralisers
in G. In fact we may restrict ourselves to connected reductive algebraic groups using the
following.

Lemma 3.57. Assume s 2 G is a semisimple element then any unipotent element u 2 CG(s) is
contained in CG(s)�.

For a connected reductive algebraic group G it was shown by Lusztig (and also Richard-
son when p is good for G) that there are only finitely many unipotent conjugacy classes of
G. Note also that a unipotent element of G must be contained in the derived subgroup (see
Proposition 3.9). In fact, the classification of unipotent conjugacy classes can be reduced to
the case of simple algebraic groups.

Lemma 3.58. Assume G is a connected reductive algebraic group G with root system F(T0) with
indecomposable subsystems Fi ✓ F(T0) such that F(T0) = F1 t · · · tFr. Let Gi = hXa | a 2
Fii then Gi 6 G is a simple algebraic group and the following hold.

(i) [G, G] = G1 · · ·Gr

(ii) [Gi, Gj] = 1 for any i 6= j

(iii) Gi \G1 · · ·Gi�1Gi+1 · · ·Gr is finite for all 1 6 i 6 r.

Let u 2 G be a unipotent element then there exist unique unipotent elements ui 2 Gi such that
u = u1 · · · ur and uiuj = ujui for all i 6= j. In particular, we have the conjugacy class (u)G is the
product (u1)G1 · · · (ur)Gr .
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Example 3.59. Assume G = GL3(K) then the unipotent classes of G are parameterised by
the Jordan blocks of the matrix. In particular, the unipotent conjugacy classes of G are in
bijection with the partitions of 3. Representatives are given by

u(13) =

2

64
1

1
1

3

75 u(2,1) =

2

64
1 1

1
1

3

75 u(3) =

2

64
1 1

1 1
1

3

75 .

This, together with Example 3.53, gives all the semisimple and unipotent classes of G.

Exercise 3.60. Give a complete list of class representatives for GL3(K) by writing down
representatives for the mixed classes.

� Duality

In Exercise 2.34 we observed that root data admit a duality given by (X, F, qX, qF) 7!
( qX, qF, X, F). By Theorem 3.23 both these root data correspond to connected reductive
algebraic groups (up to isomorphism). In particular, this duality may be translated into a
duality between connected reductive algebraic groups.

Definition 3.61. We define a dual group G? of G to be a connected reductive algebraic group
such that for some maximal torus T?

0 of G? we have an isomorphism of root data

j : Y(T0)! ( qX(T0), qF(T0), X(T0), F(T0)).

In particular, there exists an isomorphism j : X(T0) ! qX(T?
0) of abelian groups. We say

the isomorphism j defines the duality.

We will see later that this notion of duality plays an important role in the represen-
tation theory of finite reductive groups. Now, let G? be a dual group of G and let
j : X(T0) ! qX(T?

0) be an isomorphism inducing the duality. Similar to the discussion
proceeding Definition 2.39 such an isomorphism gives rise to an isomorphism

Hom(X(T0), Z)! Hom( qX(T?
0), Z),

hence to an isomorphism qX(T0)! X(T?
0). The two isomorphisms determine one another.

From the definition of an isomorphism between root data (see Definition 2.42) we are
ensured that the following diagram of bijections is commutative.
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F(T0) qF(T?
0)

qF(T0) F(T?
0)

j

q q

qj

Our choice of Borel subgroup B0 determines a set of simple roots D(T0) ⇢ F(T0). Taking
D(T?

0) to be the image of D(T0) under the above square gives a simple system for F(T?
0) and

in turn determines a Borel subgroup B?
0 of G?. Additionally, we have S? = {sa | a 2 D(T?

0)}
is a set of simple reflections for the Weyl group of G?.

Remark 3.62. In this situation we sometimes say the triples (T0, B0, G) and (T?
0, B?

0, G?) are
in duality.

Assume µ : X(T0) ! X(T0) is an endomorphism then define qµ? : qX(T?
0) ! qX(T?

0)

to be the endomorphism j � µ � j�1. Taking the dual of this endomorphism we obtain a
resulting endomorphism µ? : X(T?

0)! X(T?
0). This gives us maps

End(X(T0))! End(X(T?
0))

End(X(T?
0))! End(X(T0))

each denoted by µ 7! µ? and satisfying µ?? = µ. Recall that any element of the Weyl group
w 2 WG(T0) may be viewed as an endomorphism of X(T0), then we have the following
result.

Lemma 3.63. The map w 7! w? is an anti-isomorphism WG(T0) ! WG?(T?
0) such that for each

a 2 F(T0) we have s?a = s~j(a), (in other words this map restricts to a bijection between S and S?).

4. Finite Reductive Groups

� Generalised Frobenius Endomorphisms

Assume q = pa is a power of p for some a 2 N then, as a field, K admits an automor-
phism s given by s(x) = xq. We denote by Fq the set of fixed points Ks under s, which is
simply the finite field of cardinality q. Note that s is not an automorphism of the algebraic
group K+ but simply a bijective homomorphism (the inverse s�1 is not a regular map).

We would now like to extend this construction to affine algebraic groups. Firstly, we
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define a bijective regular map Fq : Matn(K)! Matn(K) by setting

Fq(xij) = (xq
ij).

We call Fq the standard Frobenius endomorphism of Matn(K). Note that the set of fixed points
Matn(K)Fq under Fq is simply the set of all matrices Matn(q) := Matn(Fq) with coefficients
in the finite field Fq.

Assume now that H is an affine algebraic group and f : H ,! Matn(K) is a closed
embedding (tacitly assumed to be a group homomorphism). If Fq stabilises f(H), i.e.
Fq(f(H)) = f(H), then we call Fq,f = f�1 � Fq � f a standard Frobenius endomorphism of H.
In other words, identifying H with f(H), we may think of Fq,f as the restriction of Fq to H.
The fixed point group

HFq,f = {h 2 H | Fq,f(h) = h}
is a finite subgroup of H (note that it is isomorphic to the fixed point group f(H)Fq ✓
Matn(q)). For example, taking H to be GLn(K) and f : H ,! Matn(K) to be the natural
inclusion we have the fixed point group GLn(K)Fq,f is the finite general linear group GLn(q).

Exercise 4.1. Show that for any integer k > 0 and any standard Frobenius endomorphism
Fq,f : H! H we have Fk

q,f = Fq,f � · · · � Fq,f = Fqk,f.

Remark 4.2. Our notation here may seem a bit clumsy. However, we wish to emphasise
the fact that Fq,f depends upon the embedding f. This will pay off when we compare the
idea of a standard Frobenius endomorphism and a Frobenius endomorphism.

Example 4.3. Take H to be SLn(K), On(K) or SOn(K) (see Exercise 3.30) and f : H ,!
Matn(K) to be the natural inclusion map then Fq preserves f(H) and we have the fixed
point group HFq,f is the finite group SLn(q), On(q) or SOn(q) respectively. Similarly we
may take H = Sp2n(K) and f : H ,! GL2n(K) to be the natural inclusion map to obtain
the finite symplectic group HFq,f = Sp2n(q).

Using the definition given above it is easy to produce standard Frobenius endomor-
phisms of affine algebraic groups. However, it would be desirable to have a definition
which does not depend upon the closed embedding f. Such a definition can be obtained
by using the affine algebra.

Definition 4.4. Assume H is an affine algebraic group with affine algebra A = K[H]. Let
us recall the notation of Proposition 3.2. We say a regular map F : H ! H is a Frobenius
endomorphism if there exists a power q = pa, with a 2 N, such that

(i) F⇤ is injective and F⇤(A) = Aq.

(ii) For each f 2 A there exists some m > 1 such that (F⇤)m( f ) = f qm .
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Similarly, we say H is defined over Fq (or admits an Fq-rational structure) with corresponding
Frobenius endomorphism F. Additionally, we say F is a generalised Frobenius endomorphism
if Fm is a Frobenius endomorphism for some m > 0.

Example 4.5. Assume H ✓ Matn(K) is an affine algebraic group such that Fq(H) = H.
We claim that Fq,f is a Frobenius endomorphism, where f : H ,! Matn(K) is the natural
inclusion map. Firstly we have the vanishing ideal I(H) is an ideal of the polynomial ring
K[Xij | 1 6 i, j 6 n]. The condition that H is stable under Fq is equivalent to the condition
that I(H) is stable under F⇤q . In particular, F⇤q induces a K-algebra homomorphism F⇤q,f of
the affine algebra A = K[H] whose corresponding regular map is Fq,f.

The map Fq,f is bijective hence F⇤q,f is injective (see Proposition 3.2). As F⇤q (Xij) = Xq
ij for

all 1 6 i, j 6 n we must have F⇤q,f(A) = Aq, which shows that (i) holds. To see that (ii) holds
we recall K can be expressed as the infinite union [•

m=1Fpm , in particular any element of
K lies in a finite subfield. Consequently, for any f 2 A there exists m > 1 such that all
coefficients of f lie in Fqm hence (F⇤q,f)

m( f ) = f qm as required.

Exercise 4.6. Assume H is an affine algebraic group defined over Fq with corresponding
Frobenius endomorphism F : H ! H. Let j : H ! H be a regular map such that jk = id
for some k > 1 and j � F = F � j. Show that F0 = F � j is also a Frobenius endomorphism
of H admitting an Fq-rational structure (Hint: use Proposition 3.2 and work in the affine
algebra).

Using this exercise we may now introduce another Frobenius endomorphism on the
general linear group GLn(K).

Example 4.7. Assume H = GLn(K) and let f : H ,! Matn(K) be the natural inclusion
morphism then we obtain the standard Frobenius endomorphism Fq,f on H. Let t : H! H
be the inverse-transpose automorphism given by t(A) = A�T. Setting F = Fq,f � t we
have F2 = Fq2,f because Fq,f � t = t � Fq,f and t2 = 1, hence F is certainly a generalised
Frobenius endomorphism. However, by the previous exercise, we have F is a Frobenius
endomorphism admitting an Fq-rational structure of H. The fixed point group HF 6
HF2

= GLn(q2) is the finite unitary group Un(q).

In this example we can see that the Frobenius endomorphism F of H = GLn(K) is
not the standard Frobenius endomorphism Fq,f where f : H ,! Matn(K) is the natural
inclusion. However, somewhat confusingly, there exists a closed embedding s : H ,!
Matm(K) such that F is the standard Frobenius endomorphism Fq,s. Note that it is not
necessarily the case that m = n. In general, we have the following result which shows that
any Frobenius endomorphism is a standard Frobenius endomorphism (as defined above).
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Proposition 4.8. Assume H is an affine algebraic group defined over Fq with corresponding Frobe-
nius endomorphism F : H ! H. Then there exists a closed embedding s : H ! Matm(K), for
some m > 0, such that the following diagram is commutative

H Matm(K)

H Matm(K)

s

F Fq

s

In other words, F is the standard Frobenius endomorphism Fq,s.

We will not give details here but we merely state that not every generalised Frobenius
endomorphism is a Frobenius endomorphism.

Definition 4.9. We say a finite group G is a finite reductive group if there exists a connected
reductive algebraic group G and a generalised Frobenius endomorphism F such that G =

GF.

Remark 4.10. Note that the finite reductive group G in the above definition is not necessar-
ily uniquely determined by the pair (G, F). In particular, there may exist a different pair
(G0, F0) such that G = G0F

0
.

When studying finite reductive groups our main philosophy is to obtain information
about G from the ambient algebraic group G through the generalised Frobenius endomor-
phism F. The following innocuous looking result is the key to this philosophy. We will see
its full power in the following section.

Theorem 4.11 (Lang–Steinberg). Assume H is a connected affine algebraic group and F : H!
H is a generalised Frobenius endomorphism. Then the morphism L : H ! H defined by L (g) =
g�1F(g) is surjective.

� Parameterising Orbits

When trying to determine the character table of a finite group, one of the first things
to be done is to determine the conjugacy classes. We would like to develop a systematic
way to describe the conjugacy classes of a finite reductive group. We will see that this, and
much more, can be achieved using the Lang–Steinberg theorem.

Let us assume that G is a connected reductive algebraic group and F : G ! G is a
generalised Frobenius endomorphism. Furthermore, let us assume that G acts transitively
on a non-empty set X under the action · : G⇥X! X and that there exists a map F0 : X! X

such that:
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(a) F0(g · x) = F(g) · F0(x) for all g 2 G and x 2 X.

(b) the stabiliser of any point StabG(x) is a closed subgroup of G.

Denote by XF0 = {x 2 X | F0(x) = x} the set of F0-fixed points (sometimes called rational
points) then the group G = GF acts naturally on XF0 but this action is not, in general,
transitive. One of the first, important, consequences of the Lang–Steinberg theorem is the
following.

Lemma 4.12. The set of fixed points XF0 is non-empty.

We would now like to consider how to obtain a natural method for parameterising the
orbits of G acting on XF0 , which we denote by XF0/G. We will call the orbits in XF0/G
the rational orbits of XF0 . Let us fix an element x0 2 XF0 (which exists by Lemma 4.12) and
assume for some g 2 G that g · x0 2 XF0 then

F0(g · x0) = g · x0 ) (g�1F(g)) · x0 = x0 ) L (g) = g�1F(g) 2 StabG(x0).

Let us write AG(x0) for the component group StabG(x0)/ StabG(x0)� then L (g) naturally
determines an element L (g) in AG(x0).

Definition 4.13. Let H be a group and j : H ! H a homomorphism. We say two elements
x, y 2 H are j-conjugate if there exists h 2 H such that x = h�1yj(h). This forms an
equivalence relation on H and we call the equivalence classes the j-conjugacy classes of H.
We denote the set of all j-conjugacy classes by H1(j, H).

Theorem 4.14. The map g · x0 7! L (g) induces a bijection

XF0/G ! H1(F0, AG(x0)).

Remark 4.15. Note that this parameterisation heavily depends upon the choice of element
x0 2 XF0 . Changing the element x0 may drastically change the action of F0 on AG(x0),
hence may fundamentally change the description of the parameterising set H1(F0, AG(x0)).

Example 4.16. Let B = {B 6 G | B is a Borel subgroup of G} then according to Proposi-
tion 3.11 we have G acts transitively on B 6= ? by conjugation. For any B 2 B we have
the stabiliser StabG(B) is simply the normaliser NG(B), hence the action satisfies (b) above.
We have a map F0 : B ! B given by B 7! F(B) and it is easy to check that F0 satisfies (a).
According to Lemma 4.12 we may assume that our chosen Borel subgroup B0 is fixed by
F0, i.e. F(B0) = B0. Using the fact that NG(B0) = B0 is connected (see Proposition 3.11), we
have by Theorem 4.14 that BF0 form a single rational orbit. In particular, any two F-stable
Borel subgroups of G are conjugate by an element of G.
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Example 4.17. Let T = {T 6 G | T is a maximal torus of G} then according to Propo-
sition 3.11 G acts transitively on T by conjugation. Again taking F0 : T ! T to be the
map T 7! F(T) we have the conjugation action and F0 satisfy (a) and (b) above. For
any T 2 T we again have the stabiliser StabG(T) is simply the normaliser NG(T) whose
connected component is CG(T) = T. Let us assume that our chosen maximal torus T0 is F-
stable. The component group AG(T0) is simply the Weyl group WG(T0) and Theorem 4.14
says that there is a bijection between the G-conjugacy classes of F-stable maximal tori and
H1(F, WG(T0)).

Example 4.18. Let X = {(T, B) 2 T⇥B | T 6 B} then G acts transitively on X 6= ? by
g · (T, B) = (gTg�1, gBg�1). Taking F0 : X ! X to be the map (T, B) 7! (F(T), F(B)) it is
easy to see that F0 satisfies (a) above. Now, for any (T, B) 2 X we have

StabG(T, B) = NG(B) \ NG(T) = B \ NG(T) = NB(T) = T.

Note this last equality can be deduced from Lemma 3.47. In particular we have (b) holds
and furthermore StabG(T, B) is connected.

By the previous example and Lemma 4.12 we can, and will, assume that our
fixed maximal torus and Borel subgroup T0 6 B0 are both F-stable. Note that
this pair is then uniquely determined up to G-conjugacy.

Remark 4.19. Let us investigate a little bit further the F-stable maximal tori of G. Given
an element w 2 WG(T0) we fix a corresponding F-stable maximal torus Tw such that
Tw = gT0g�1 for some g 2 G satisfying L (g) = ẇ. We say Tw is an F-stable maximal
torus obtained from T0 by twisting with w. The corresponding fixed point group under F is
given by

Tw = {gt | t 2 T0 and F(gt) = gt},

= {gt | t 2 T0 and F(t) = tw}

because F(g) = gẇ. We define bTw = g�1 Tw, which is the subgroup of T0 consisting of
all elements satisfying F(t) = tẇ. Let us denote by Fw : T0 ! T0 the homomorphism
given by Fw(t) = ẇF(t) then if F(ẇ) = ẇ this is a Frobenius endomorphism of T0 by
Exercise 4.6. The conjugation map Inng : G ! G defines an isomorphism T0 ! Tw such
that F � Inng = Inng �Fw, in particular this restricts to an isomorphism of finite groups
bTw ! Tw. In general, we work with bTw instead of Tw as it is difficult to construct explicitly
an element g 2 G satisfying L (g) = ẇ.
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Example 4.20. Assume G = GL3(K) and let T0 be the maximal torus consisting of di-
agonal matrices. We take F = Fq,f to be the standard Frobenius endomorphism where
f : GL3(K) ,! Mat3(K) is the natural inclusion. Let

ẇ =

2

64
0 1 0
1 0 0
0 0 1

3

75 2 NG(T0)

then we have
Fw(diag(t1, t2, t3)) = diag(tq

2, tq
1, tq

3).

In particular this shows us that

T̂w = TFw
0 = {diag(t1, tq

1, t3) 2 T0 | tq2�1
1 = tq�1

3 = 1},

which is isomorphic to the direct product of cyclic groups Cq2�1 ⇥ Cq�1.

Exercise 4.21. Construct a matrix g 2 GL3(K) such that L (g) = ẇ, hence write down
explicitly the subgroup Tw of GL3(q).

� Conjugacy Classes

Assume we have obtained a full list of the conjugacy classes in G. If C is an F-stable
conjugacy class of G then G clearly acts transitively on C. We define F0 to be the restriction
of F to C then this action and F0 satisfy conditions (a) and (b) above. The orbits CF/G are
the rational conjugacy classes contained in CF. Clearly the stabiliser of a point x0 2 CF is just
the centraliser CG(x0) so by Theorem 4.14 the rational classes CF/G are in bijection with
the F-conjugacy classes H1(F, AG(x0)) where AG(x0) = CG(x0)/CG(x0)�. In particular, if
CG(x0) is connected then CF is a single G-conjugacy class.

Every element x 2 G lies in an F-stable conjugacy class of G. Furthermore, every F-
stable conjugacy class of G contains an element of G. Hence to determine the conjugacy
classes of G it is enough to determine the F-stable conjugacy classes C of G then use
Theorem 4.14 to parameterise the rational classes in CF/G.

� The Weyl group and Bruhat decomposition of G

As T0 is F-stable we have F induces an automorphism of the Weyl group W = WG(T0) =

NG(T0)/T0, which we again denote by F. Assume S = {sa | a 2 D(T0)} is the set of simple
reflections for W determined by B0 then, as B0 is F-stable, we have F(S) = S. Let us denote
by S/F the orbits of F acting on S. Assume J 2 S/F is an F-orbit and let WJ = hs 2 Ji 6 W
be the F-stable parabolic subgroup generated by J. Denote by sJ 2 WJ the longest element
of WJ (c.f. Lemma 2.17). It is easy to check that sJ 2WF

J 6 WF.
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Proposition 4.22. Let T = {sJ | J 2 S/F} then (WF, T) is a Coxeter system (see Definition 2.14).
In particular, WF is a Coxeter group.

Exercise 4.23. Show that if F is the identity on W then T = S. In particular, the Coxeter
system (WF, T) is simply (W, S).

Remark 4.24. It is usually the case that WF is a Weyl group but this is not always the case.
An example is given by the case where G is a simple group of type F4, p = 2 and F is
a generalised Frobenius endomorphism inducing the exceptional graph automorphism of
W. In this situation WF is isomorphic to a dihedral group of order 16 which is not a Weyl
group. This is the only example when G is simple.

In spite of this remark we will call WF the Weyl group of the finite reductive group
G. This definition is somewhat justified by the following corollary of the Lang–Steinberg
theorem.

Lemma 4.25. Assume H is an affine algebraic group and N 6 H is a closed connected normal
subgroup then (H/N)F ⇠= HF/NF.

Remark 4.26. It is important to note that if N is not connected then the above statement is
no longer true!

In particular, we have WF = WG(T0)F ⇠= NG(T0)F/TF
0 . This implies that every element

w 2 WG(T0)F has a representative ẇ 2 NG(T0)F. For the algebraic group we noted that
WG(T) is isomorphic to WG(T0) for any maximal torus T of G. However, this is not the
case for the finite group G as is shown by the following exercise.

Exercise 4.27. Let Tw be an F-stable maximal torus obtained from T0 by twisting with
w 2WG(T0). Prove that

WG(Tw)
F ⇠= CW,F(w) := {x 2WG(T0) | x�1wF(x) = w}.

We call CW,F(w) the F-centraliser of w 2 W. (Hint: use the identification of Tw equipped
with F with T0 equipped with Fw to show that WG(Tw)F ⇠= WG(T0)Fw .)

Now that we have the notion of the Weyl group in place we can obtain a direct analogue
of Theorem 3.33 for the finite reductive group G.

Exercise 4.28. Assume G is a connected reductive algebraic group, F is a generalised Frobe-
nius endomorphism of G and T 6 B are respectively an F-stable maximal torus and F-
stable Borel subgroup of G. If W = WG(T) is the corresponding Weyl group then we
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have
G =

G

w2WF

BẇB

where this union is disjoint and ẇ 2 NG(T)F is a fixed representative of w 2 WG(T)F.
(Hint: use Theorem 3.33).

� Duality

Recall the definition of a dual group for G given in Definition 3.61 and the notation
introduced for G?. We wish to now define what it means for a finite reductive group to be
a dual group of G.

Definition 4.29. Assume G? is a dual group of G and let j : X(T0) ! qX(T?
0) be the

isomorphism defining the duality. Assume F? : G? ! G? is a generalised Frobenius
endomorphism of G? then the fixed point group G? is a dual group of G if T?

0 and B?
0 are

F?-stable and j � F = F? � j.

Remark 4.30. In this situation, we sometimes say the two quadruples (T0, B0, G, F) and
(T?

0, B?
0, G?, F?) are in duality.

Exercise 4.31. Show that GLn(q) is a dual group of GLn(q).

Lemma 4.32. Every finite reductive group G has a dual group G?.

Recall that in Lemma 3.63 we defined an anti-isomorphism WG(T0) ! WG?(T?
0) be-

tween the Weyl groups of G and G?. We now wish to investigate the applications of
this anti-isomorphism to the parameterisation of F-stable maximal tori described in Ex-
ample 4.17. Let us denote by T? the set of all F?-stable maximal tori of G?. We fix a
representative ẇ 2 NG?(T?

0) for each element w 2 W?. As above we can fix an F?-stable
maximal torus T?

w such that T?
w = gT?

0 g�1 for some g 2 G? satisfying L (g) = ẇ, (where
here L is applied in G?).

Exercise 4.33. Show that the anti-isomorphism WG(T0) ! WG?(T?
0) induces a bijection

H1(F, WG(T0)) ! H1(F?, WG?(T?
0)). In particular, the map Tw 7! T?

w? defines a bijection
T/G ! T?/G?.

Definition 4.34. Given any maximal torus T 2 T we denote by T? 2 T? a maximal torus
such that the corresponding classes in T/G and T?/G? are in bijective correspondence. We
call T and T? dual maximal tori.
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5. Ordinary Representation Theory of Finite Reductive Groups

In this section we will be interested in the character theory of our finite reductive group
G. Let ` be a prime different from p and let us fix an algebraic closure Q` of the field
of `-adic numbers Q` (this is an algebraically closed field of characteristic 0). If X is any
finite set then we denote by Q`[X], or simply Q`X, the free Q`-vector space whose elements
consist of formal sums

Â
x2X

axx

with ax 2 Q`. If X is a group then this carries the structure of an algebra over Q`.
For any finite group H we will take the statement “M is an H-module” to mean that M is

a left Q`H-module. Similarly, if K is also a finite group then we will take the statement “M
is an (H, K)-bimodule” to mean that M is both a left Q`H-module and right Q`K-module
with compatible actions. We will denote by H–mod the category of finitely generated,
equivalently finite dimensional, H-modules. We will also denote by Cent(H) the Q`-vector
space of functions f : H ! Q` which are constant on the conjugacy classes of H.

Let us fix an involutive automorphism : Q` ! Q` such that w = w�1 for all roots of
unity w 2 Q

⇥
` . The space Cent(H) has a basis given by the set of irreducible characters

Irr(H) which is orthonormal with respect to the usual inner product h�,�iH : Cent(H)⇥
Cent(H)! Q` defined by

h f , f 0iH =
1
|H| Â

h2H
f (h) f 0(h).

If M and M0 are H-modules then we define

hM, M0iH = dim HomQ`H(M, M0).

If f and f 0 are characters afforded respectively by modules M and M0 then we have
hM, M0iH = h f , f 0iH.

We will also use Irr(H) to denote the isomorphism classes of simple H-modules, which
are naturally in bijective correspondence with the irreducible characters. Note that the
Grothendieck group K0(H–mod) may naturally be identified with the Z-module of all
virtual characters Z Irr(H) (i.e. the set of all Z-linear combinations of Irr(H)) and the
extension by scalars Q` ⌦Z K0(H–mod) may be identified with Cent(H).

For a finite group H we will often need to consider the opposite group Hopp. As a set this
is simply H endowed with a new multiplication ⇤ given by x ⇤ y = yx for all x, y 2 Hopp.
Using the isomorphism H ! Hopp defined by x 7! x�1 we will respectively identify
Irr(H) ✓ Z Irr(H) ✓ Cent(H) with Irr(Hopp) ✓ Z Irr(Hopp) ✓ Cent(Hopp) without spe-
cific mention.

Remark 5.1. Typically when considering ordinary irreducible characters of a finite group,
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one would work over the complex numbers C. However, we will see that to employ pow-
erful techniques from algebraic geometry we will need to work over Q`. One quick (but
slightly undesirable) way to see that the objects are equivalent is to note that Q` and C are
isomorphic as fields (assuming the axiom of choice). Under such an isomorphism one may
also identify the involutive automorphism with complex conjugation.

� Induction, Restriction and Inflation

Recall that if H is any finite group and K 6 H is a subgroup then we have two
functors; the restriction functor ResH

K : H–mod ! K–mod and the induction functor
IndH

K : K–mod! H–mod. For M 2 K–mod and N 2 H–mod these are given by

ResH
K (M) = M and IndH

K (N) = Q`H ⌦Q`K N,

where in the restriction K simply acts through the H-action. These respectively induce
Q`-linear maps ResH

K : Cent(H) ! Cent(K) and IndH
K : Cent(K) ! Cent(H). For any

y 2 Cent(K) we have

(IndH
K )(y)(h) =

1
|K| Â

x2H
ẏ(xhx�1),

for all h 2 H, where ẏ(y) = y(y) if y 2 K and 0 otherwise.
We will denote by H/K the set of left cosets {hK | h 2 H} of K in H and similarly by

K\H the set of right cosets {Kh | h 2 H} of K in H. Assume now that K is normal of H
and that there exists a subgroup L 6 H such that H = KL = LK and K \ L = {1} then we
can define the inflation functor InfH

L : L–mod ! H–mod in the following way. The group
algebra Q`[H/K] of the quotient group H/K is an (H, Lopp)-bimodule where the actions
are given by left and right multiplication. We then define for any L-module M the inflated
module

InfH
L (M) = Q`[H/K]⌦Q`L M.

Note that K acts trivially on this module. The inflation functor induces a Q`-linear map
InfH

L : Cent(L) ! Cent(H) given by InfH
L (y) = y � p where p : H ! L is the natural

projection map.

� Harish-Chandra Induction and Restriction

Let us assume that P is an F-stable parabolic subgroup of G with F-stable Levi comple-
ment L. Recall that P has a semidirect product decomposition L n U, where U = Ru(P),
then we have U is F-stable as both P and L are F-stable. In particular, we have a semidirect
product decomposition P = L nU.

Definition 5.2. Assume L is an F-stable Levi subgroup of an F-stable parabolic subgroup
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P = L n U then we define RG
L✓P : L–mod! G–mod to be the functor given by

RG
L✓P(M) = Q`[G/U]⌦Q`L M.

We call RG
L✓P a Harish-Chandra induction functor. This admits an adjoint functor ⇤RG

L✓P :
G–mod! L–mod known as a Harish-Chandra restriction functor given by

⇤RG
L✓P(M) = Q`[U\G]⌦Q`G M.

Exercise 5.3. Prove that RG
L✓P and ⇤RG

L✓P are adjoint functors.

Exercise 5.4. Prove that Q`[G/U] and Q`G ⌦Q`P Q`[P/U] are isomorphic as (G, Lopp)-
bimodules. Deduce that RG

L✓P is simply the functor IndG
P � InfP

L .

We will see later that the following result can be deduced from the Mackey formula for
Harish-Chandra induction and restriction. However, we recall this now for convenience.

Lemma 5.5. Assume P and P0 are F-stable parabolic subgroups of G having L as an F-stable Levi
complement then for any L-module M and any G-module N we have

RG
L✓P(M) ⇠= RG

L✓P0(M) ⇤RG
L✓P(N) ⇠= ⇤RG

L✓P0(N).

Consequently, we will simply write RG
L for the functor RG

L✓P.

To obtain functors L–mod! G–mod and G–mod! L–mod we could have simply con-
sidered the usual induction and restriction functors. However, these turn out to not have
such desirable properties. In particular, given a simple module M 2 Irr(L) the decompo-
sition of IndG

L (M) into indecomposable submodules is quite intractable. To show that we
are in a better situation for RG

L✓P(M) we need to recall the fitting correspondence.
Let H be a finite group and M an H-module. Let us denote by E = EndQ`H(M)opp

the opposite algebra of the endomorphism algebra of M. We then have a functor FM :
H–mod ! E–mod given by FM(V) = HomQ`H(M, V). Here E–mod is the category of
all finitely generated left E-modules and E acts on FM(X) by precomposition. Let Irr(H |
M) ✓ Irr(H) be all isomorphism classes of simple modules which are isomorphic to a
submodule of M and let Irr(E) be the set of all isomorphism classes of simple E-modules.

Proposition 5.6 (Fitting correspondence). The functor FM induces a bijection

FM : Irr(H | M)! Irr(E).

Assume now that M = M1� · · ·�Mk is a decomposition into indecomposable H-submodules and
set Ei = FM(Mi) for each 1 6 i 6 k then the following hold:
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(i) E = E1 � · · ·� Ek

(ii) for any 1 6 i, j 6 k we have Mi ⇠= Mj as H-modules if and only if Ei ⇠= Ej as E-modules.

The fitting correspondence tells us that giving a decomposition of RG
L (M) for a simple

module M 2 Irr(L) is equivalent to giving a decomposition of its endomorphism algebra.
In particular, this leads us to the question: what is the endomorphism algebra of RG

L (M)?
The answer comes in the form of Hecke algebras but before we go into this we first consider
an inductive parameterisation of Irr(G) given by Harish-Chandra induction.

Definition 5.7. A simple module M 2 Irr(G) is said to be cuspidal if ⇤RG
L (M) = 0 for every

F-stable Levi complement L 6= G of an F-stable parabolic subgroup.

Remark 5.8. Note that if G is a torus then every simple module is cuspidal.

Proposition 5.9. Assume now that M 2 Irr(G) is a simple G-module then the following hold:

(i) there exists a pair (L, N) where: L is an F-stable Levi complement of an F-stable parabolic
subgroup of G and N 2 Irr(L) is a cuspidal simple module such that hRG

L (N), MiG 6= 0.

(ii) assume (L, N) and (L0, N0) are minimal such that hRG
L (N), Mi 6= 0 and hRG

L (N), Mi 6=
0 then there exists g 2 G such that (gL, gN) = (L0, N0).

This shows that we have an inductive method for parameterising Irr(G) which depends
on the following two steps:

• classify the cuspidal simple modules of any finite reductive group,

• determine the structure of the endomorphism algebra EndQ`G(RG
L (N))opp for any

cuspidal simple module N 2 Irr(L).

The first part turns out to be quite difficult but was achieved by Lusztig using Deligne–
Lusztig induction and restriction (which we will meet later). What we will discuss now
is the second problem in the special case where L is a maximal torus and N is the trivial
module.

� Hecke algebras

Let B = T n U be an F-stable Borel subgroup such that T is an F-stable maximal torus.
We will denote by W = WG(T) the Weyl group of G with respect to T and S ✓ W the
set of simple reflections determined by B. We will denote by (WF, T) the Coxeter system
described in Proposition 4.22. Consider the submodule M = Q`Be ⇢ Q`B generated by the
idempotent

e :=
1
|B| Â

b2B
b,
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then M is isomorphic to the trivial module of B. We define the Hecke algebra H(G, B) to be
the Q`-algebra eQ`Ge. Note that eQ`Ge ⇢ Q`G is not a subalgebra as it does not contain
the identity.

Exercise 5.10. Check that IndG
B (M) is isomorphic to (IndG

B � InfB
T)(M0) ⇠= RG

T (M0) where
M0 2 Irr(T) is also the trivial module.

Recall that eQ`Ge is isomorphic to EndQ`G(M)opp, hence the Hecke algebra H(G, B)
is isomorphic to our desired endomorphism algebra. For any w 2 WF we will write
ẇ 2 NG(T)F for a representative of w (which exists by Lemma 4.25) and define

T̄w :=
1
|B| Â

x2BẇB
x.

We call T̄w a standard basis element of H(G, B). The Hecke algebra is generated by the set
{T̄s | s 2 T} and the basis elements satisfy the relations

T̄sT̄w = T̄sw if `(sw) > `(w),

T̄sT̄w = qsT̄sw + (qs � 1)T̄w if `(sw) < `(w),

for any s 2 T and w 2 WF, where qs := [B : ṡBṡ�1 \ B] = qcs is the index parameter. Note
that, here, the length function ` is that of the Coxeter group WF. If s is WF-conjugate to s0

then we have qs = qs0 or equivalently cs = cs0 .

Exercise 5.11. Assume G = GLn(K), T is the subgroup of diagonal matrices, B is the
subgroup of upper triangular matrices F is the standard Frobenius endomorphism Fq,f

where f : GLn(K) ! Matn(K) is the natural inclusion map. Show that qs = q for all
simple reflections s 2 S.

Remark 5.12. In general if F is a Frobenius endomorphism defining an Fq-rational struc-
ture on G and F induces the identity on W then qs = q for all s 2 T = S.

This algebra quite clearly depends on the index parameters qs. What we would like to
do is study the Hecke algebra independently of these parameters.

Definition 5.13. Let (W , J) be a Coxeter system and denote by R the commutative polyno-
mial ring Q[uj | j 2 J]. We define the generic Hecke algebra H(W , J) to be an R-algebra with
basis {Tw | w 2W} whose elements satisfy the relations

TjTw = Tjw if `(jw) > `(w),

TjTw = ujTjw + (uj � 1)Tw if `(jw) < `(w).

for all j 2 J, w 2W . Here ` is the length function of W .
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Remark 5.14. It can be shown, as before, that this algebra is generated by the set {Tj | j 2
J}.

We will assume now that R = Q[us | s 2 T] and that H := H(WF, T). We now consider
how the generic Hecke algebra H relates to the Hecke algebra we first introduced.

Definition 5.15. A specilisation of R is a ring homomorphism f : R! F, where F is a field.
If f : R ! F is a specialisation of R then F becomes an (F, R)-bimodule with R acting on
the right by f . We can then consider the tensor product H f = F ⌦R H, which we call a
specialisation of H.

Proposition 5.16. Let f1 : R ! Q`, fq : R ! Q` be specilisations such that f1(us) = 1 and
fq(us) = qs for all s 2 T. Then we have H1 := H f1

⇠= Q`WF and Hq := H fq
⇠= H(G, B) are both

semisimple algebras.

The isomorphisms are given by the canonical maps, namely s1(w) = 1 ⌦ Tw and
sq(T̄w) = 1 ⌦ Tw for all w 2 WF. We would now like to relate the two specialisations
given in the above proposition. Let K denote the field of fractions of the polynomial ring R
then we can define the K-algebra H̃ = K⌦R H. Before stating the required result we need
to first introduce a definition.

Definition 5.17. Let A be an F-algebra, where F is a field and let F denote the algebraic
closure of F. The numerical invariants of A are then the dimensions of the simple modules
of the F-algebra A? = F⌦F A.

Theorem 5.18 (Tits’s Deformation Theorem). Let f : R ! Q` be a specilisation of R then H̃
and H f have the same numerical invariants.

Corollary 5.19. We have Q`WF and H(G, B) are isomorphic as Q`-algebras.

Exercise 5.20. Prove Corollary 5.19. (Hint: use the Artin–Wedderburn theorem.)

Note that Corollary 5.19 does not give an explicit isomorphism between these two alge-
bras. However, an explicit isomorphism is known and was constructuted by Lusztig, (see
[Lus81, Theorem 3.1]). Using Corollary 5.19 we may now obtain our main result.

Theorem 5.21. There is a bijection Irr(WF) ! Irr(G | RG
T (M)) which we denote r 7! Mr such

that
hRG

T (M), MriG = dim r.

Example 5.22. Assume G = GLn(K) and F is the standard Frobenius endomorphism Fq,f

where f : GLn(K) ,! Matn(K) is the natural inclusion. We may then take T and B to be
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respectively the subgroup of all diagonal matrices and the subgroup of all upper triangular
matrices. The automorpism of W = WG(T0) induced by F is simply the identity, hence
WF = W ⇠= Sn. In particular, the set Irr(G | RG

T (M)) is in bijection with Irr(Sn) which is,
in turn, in bijection with all partitions of n. This gives us a very explicit parameterisation
of these simple modules. Furthermore the multiplicities are given by the dimensions of the
simple modules for Sn, which can be computed using the hook-length formula.

Remark 5.23. The multiplicity condition in Theorem 5.21 does not uniquely determine the
bijection. However, assuming G is simple then the bijection can be made unique in almost
all cases using the specialisation maps. We will not go into this in detail here but simply
refer the reader to [CR87, Theorem 68.26].

� Kazhdan–Lusztig Cells

Let (W , J) be a Coxeter system. We will denote by H = H(W , J) the generic Hecke
algebra defined as in Definition 5.13. However, we will further assume that uj = uk for all
j, k 2 J and simply denote this common variable by u. Additionally we will assume that H
is defined over the Laurent polynomial ring A := Z[u1/2, u�1/2], not Q[u]. We do this so
that we can invert the standard basis elements Tw in H, i.e. for j 2 J we have

T2
j = uT1 + (u� 1)Tj ) T�1

j = (u�1 � 1)T1 + u�1Tj.

The Laurent polynomial ring A has a natural involutive automorphism denoted :
A ! A which satisfies u1/2 = u�1/2 and u�1/2 = u1/2. We can then extend this to a ring
automorphism : H! H by setting

Â
w2W

cwTw = Â
w2W

cwT�1
w�1 ,

where cw 2 A. Note that this is not a linear map. Denote by 6 the Bruhat ordering on
W (see Definition 3.34) then we have the following fundamental result of Kazhdan and
Lusztig.

Theorem 5.24 (Kazhdan and Lusztig). For each element w 2 W there exists a unique element
Cw 2 H such that Cw = Cw and

Cw = Â
y6w

(�1)`(w)+`(y)u
1
2 `(w)u�`(y)Py,w(u)Ty.

where Pw,w(u) = 1 and Py,w(u) 2 Z[u] has degree 6 1
2(`(w) � `(y) � 1) if y < w. The

polynomials Py,w(u) are called Kazhdan-Lusztig polynomials and the set {Cw | w 2 W} forms
a basis for H called the Kazhdan-Lusztig basis.
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The Kazhdan-Lusztig basis is the key for defining the notion of cells for W . If x, y 2W
then we define hx,y,z 2 A to be the structure constants given by

CxCy = Â
z2W

hx,y,zCz.

We write z  L y if there exists x 2 W such that hx,y,z 6= 0, (i.e. Cz appears in the product
CxCy), then we write 6L for the pre-order relation on W generated by L . In other words
we say z 6L y if there exists a sequence z = y0, y1, . . . , ym = y such that yi�1  L yi. We
then define an associated equivalence relation ⇠L on W by setting z ⇠L y if z 6L y and
y 6L z. We denote the set of associated equivalence classes, called the left cells of W , by
W/L .

Similarly we write z  R y if there exists x 2 W such that hy,x,z 6= 0, (i.e. Cz appears in
the product CyCx), then we write 6R for the associated pre-order and ⇠R for the associated
equivalence relation. We denote the set of associated equivalence classes, called the right
cells of W , by W/R. Using the antihomomorphism Cw 7! Cw�1 we see that z 6L y ,
z�1 6R y�1. In particular if L ✓W if a left cell of W then the map L 7! L�1, where

L�1 := {x�1 | x 2 L},

gives a bijection between the left and right cells of W .
Finally we can define a pre-order 6L R on W by specifying that z 6L R y if there exists

a sequence z = y0, y1, . . . , ym = y such that, for each i 2 {1, . . . , m}, we have yi�1 6L yi

or yi�1 6R yi. The equivalence relation associated with 6L R is denoted by ⇠L R and the
corresponding set of equivalence classes, called the two-sided cells of W , are denoted by
W/L R.

To determine the cells of W it is clear that we will have to determine products of
Kazhdan-Lusztig basis elements. The reason why cells are introduced with respect to
the basis {Cw | w 2 W} and not the standard basis {Tw | w 2 W} is due to the following
result regarding multiplication.

Theorem 5.25 (Kazhdan and Lusztig). Let j 2 J be a simple reflection then for any w 2 W we
have

CjCw =

8
><

>:

Cjw + Â
y2W :jy<y<w

µ(y, w)Cy if jw > w,

�(u 1
2 + u� 1

2 )Cw if jw < w,

CwCj =

8
><

>:

Cwj + Â
z2W :zj<z<w

µ(z�1, w�1)Cz if wj > w,

�(u 1
2 + u� 1

2 )Cw if wj < w,
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where µ(y, w) is the coefficient of u
1
2 (`(w)�`(y)�1) in Py,w(u).

In particular, this theorem tells us that we can compute the left, right and two-sided
cells if we can compute the Kazhdan-Lusztig polynomials.

Example 5.26. We consider the case where (W , J) is the dihedral group of order 8 with
J = {a, b}. Recall that the Bruhat order for W is described in Example 3.36. It is known
that, when W is a dihedral group we have Py,w(u) = 1 for all y, w 2 W . In particular, we
have

µ(y, w) = µ(y�1, w�1) =

8
<

:
1 if `(w) = `(y) + 1,

0 otherwise.

It is then clear from the multiplication relations of the Kazhdan-Lusztig basis that

abab L bab L ab L b L 1.

To determine the left cells we must reverse the arrows in this sequence.
Let w0 2 W denote the longest element then it is easy to see that we always have

w0 6L x and w0 6R x for any element x 2 W because w0 is maximal in the Bruhat
ordering. Conversely, assume j 2 J then we have jw0 < w0 and w0 j < w0 so

CjCw0 = Cw0Cj = �(u 1
2 + u�

1
2 )Cw0 .

In particular x  L w0 or x  R w0 ) x = w0 so {w0} must be a left, right and two-sided
cell. Similar arguments show that {1} is a left, right and two-sided cell.

We now progress down the chain of elements considered above. Making sensible
choices at each stage we have

CaCbab = Cabab + µ(ab, bab)Cab + µ(a, bab)Ca,

= Cabab + Cab,

CbCab = Cbab + µ(b, ab)Cb,

= Cbab + Cb.

Using these calculations it is clear that we also have a reverse sequence

b L ab L bab,

which tells us that {b, ba, bab} forms a left cell of W . An almost identical calculation shows
that there is one remaining left cell and it is given by {a, ab, aba}. Hence the complete set
of left cells is

W/L = {1} t {a, ab, aba} t {b, ba, bab} t {abab}.
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Using the bijection between left cells and right cells we easily determine the complete set
of right cells to be

W/R = {1} t {a, ba, aba} t {b, ab, bab} t {abab}.

In this case it is then easy to verify that the complete set of two sided cells is

W/L R = {1} t {a, ba, aba, b, ab, bab} t {abab}.

� Deligne–Lusztig Induction and Restriction

What we would like to do is extend the Harish-Chandra functors RG
L✓P and ⇤RG

L✓P to
the case where P is any parabolic subgroup (not necessarily F-stable) with F-stable Levi
complement L. This was achieved by Deligne and Lusztig in their landmark paper [DL76].
Unfortunately one does not obtain functors on the module categories but instead Q`-linear
maps between character rings. By work of Rickard and Rouquier, one can achieve functors
by passing to the bounded derived category of the module category. However, to maintain
simplicity we will work exclusively with virtual characters.

We will now describe Deligne and Lusztig’s construction which uses, in a crucial way,
the machinery provided by `-adic cohomology. Let X be an affine algebraic variety over K.
For each i 2 Z we have a finite dimensional Q`-vector space Hi

c(X) := Hi
c(X, Q`) called the

ith `-adic cohomology group with compact support. The following theorem encapsulates some
of the properties of Hi

c(X).

Theorem 5.27. Assume X is an affine algebraic variety over K and i 2 Z then the following hold.

(i) Hi
c(X) = 0 if i 62 {0, . . . , 2 dim X}.

(ii) Any finite morphism F : X! X induces a linear endomorphism F⇤ : Hi
c(X)! Hi

c(X) for
any i 2 Z and this correspondence is functorial. If F is a Frobenius endomorphism then F⇤

is an automorphism.

(iii) If g 2 Aut(X) is a finite automorphism of X then the Lefschetz number

L(g, X) = Â
i>0

(�1)i tr(g, Hi
c(X))

of g acting on X is an integer independent of `.

(iv) Assume Y is also an affine algebraic variety over K and f : X! Y is a bijective morphism.
If g 2 Aut(X), g0 2 Aut(Y) are finite morphisms such that f � g = g0 � f then

L(g, X) = L(g0, Y).
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(v) If F : X! X is a Frobenius endomorphism then

|XF| = Â
i2Z

(�1)i Tr(F⇤, Hi
c(X)).

Remark 5.28. Note that the functoriality of `-adic cohomology mentioned in (ii) of Theo-
rem 5.27 only holds for finite morphisms. The reader can be assured that we will only use
this in the context of finite morphisms.

Let U = Ru(P) be the unipotent radical of P then, as P is not necessarily F-stable, we
do not necessarily have that U is F-stable. We define

YG
U = L �1(U) = {g 2 G | g�1F(g) 2 U},

which is an algebraic subset of G. For each g 2 G, l 2 L and for all x 2 L �1(U) we have

L (gx) = x�1g�1F(g)F(x) = x�1F(x) 2 U,

L (xl) = l�1x�1F(x)F(l) = l�1x�1F(x)l 2 l�1Ul = U.

In particular, the direct product G ⇥ Lopp acts on YG
U as a group of finite automorphisms

via (g, l) · x = gxl. By Theorem 5.27 this action induces an action of G ⇥ Lopp on Hi
c(YG

U)

which makes Hi
c(YG

U) a (G, Lopp)-bimodule. Similarly, by exchanging the factors in the
direct product we have Hi

c(YG
U) is an (Lopp, G)-bimodule.

Definition 5.29. Assume P = LnU is a parabolic subgroup with F-stable Levi complement
L then we define RG

L✓P : Irr(L)! Z Irr(G) by setting

RG
L✓P(q)(g) = Â

i>0
(�1)i Tr(g, Hi

c(Y
G
U)⌦Q`L q),

for all g 2 G. We call RG
L✓P a Deligne–Lusztig induction map. Similarly we have a map

⇤RG
L✓P : Irr(G)! Z Irr(L) defined by setting

⇤RG
L✓P(q)(l) = Â

i>0
(�1)i Tr(l, Hi

c(Y
G
U)⌦Q`G c),

for all l 2 L. We call ⇤RG
L✓P a Deligne–Lusztig restrcition map.

Remark 5.30. By linearity we can extend the Deligne–Lusztig induction and restriction
maps RG

L✓P and ⇤RG
L✓P to maps Cent(L)! Cent(G) and Cent(G)! Cent(L) respectively.

Lemma 5.31. The Deligne–Lusztig induction and restriction maps satisfy Frobenius reciprocity. In
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particular, for any q 2 Cent(L) and c 2 Cent(G) we have

hRG
L✓P(q), ciG = hq, ⇤RG

L✓P(c)iL.

If P is F-stable then we have used RG
L✓P and ⇤RG

L✓P to stand for both Deligne–Lusztig
induction and restriction and Harish-Chandra induction and restriction. However, the
following shows that when P is F-stable these notions coincide.

Proposition 5.32. Assume P is F-stable then for any i 2 Z we have

Hi
c(Y

G
U) =

8
<

:
0 if i 6= 2 dim U

Q`[G/U] if i = 2 dim U

Exercise 5.33. Using the above result confirm that RG
L✓P and ⇤RG

L✓P coincide with the
Harish-Chandra induction and restriction maps defined in Definition 5.2 when P is F-
stable.

We noted in Lemma 5.5 that Harish-Chandra induction and restriction functors were
independent of the parabolic subgroup used to define them. We will see now that this
follows from the validity of the Mackey formula.

Assume P and Q are parabolic subgroups with F-stable Levi complements L and M
respectively. We denote by SG(L, M) the set of all g 2 G such that L \ gM contains a
maximal torus of G. We say the Mackey formula holds for L ✓ P and M ✓ Q if the following
equality holds

⇤RG
L✓P � RG

M✓Q = Â
g2[L\SG(L,M)F/M]

RL
L\gM✓L\gQ � ⇤R

gM
L\gM✓P\gM � (ad g)M. (†)

Here [L\SG(L, M)F/M] denotes a set of representatives for the cosets L\SG(L, M)F/M and
(ad g)M : Cent(M)! Cent(gM) is the map induced by precomposing with the conjugation
map Inng�1 : gM ! M. We say the Mackey formula holds for G if the equality (†) holds for
every pair of parabolic subgroups P and Q of G and every F-stable Levi complement L ✓ P
and M ✓ Q.

Theorem 5.34 (Deligne, Deligne–Lusztig, Bonnafé–Michel). The Mackey formula holds for
L ✓ P and M ✓ Q if one of the following conditions is satisfied:

(i) both P and Q are F-stable,

(ii) either L or M is a maximal torus of G.

Furthermore, the Mackey formula holds for G unless q = 2.
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Remark 5.35. For a more precise statement of the remaining unknown cases for the Mackey
formula, see [BM11].

Exercise 5.36. Assume P and Q are parabolic subgroups with common F-stable Levi com-
plement L. Show that if the Mackey formula holds for G then RG

L✓P = RG
L✓Q and ⇤RG

L✓P =
⇤RG

L✓Q. Similarly, prove Lemma 5.5. (Hint: argue by induction on the semisimple rank of
G, which is defined to be the dimension of a maximal torus of G/R(G), and use the fact
that the inner product h�,�iG is non-degenerate.)

Exercise 5.37. Prove Lemma 5.5.

Exercise 5.38. Assume B and B0 are Borel subgroups of G containing a common maximal
torus T. Show that RG

T✓B = RG
T✓B0 and ⇤RG

T✓B = ⇤RG
T✓B0 .

� Deligne–Lusztig Characters

We will now focus on the induction map RG
T✓B where T is an F-stable maximal torus of

G contained in the Borel subgroup B = T n U. By the previous exercise RG
T✓B is indepen-

dent of B, hence we will simply denote this by RG
T .

Definition 5.39. Assume T is an F-stable maximal torus of G and q 2 Irr(T) then we call
RG

T (q) a Deligne–Lusztig character of G.

Note that RG
T (q) 2 Z Irr(G) is only a virtual character of G and is not necessarily a

character of G. We would now like to consider a slightly better description for the virtual
character RG

T (q). In general the best one can achieve is the following mild rewording.

Proposition 5.40. For any g 2 G we have

RG
T (q)(g) =

1
|T| Â

t2T
q(t�1)L((g, t), YG

U).

However with this we can start to consider how much RG
T (q) depends upon the choice

of T and q. Before we do this we introduce the following notation.

Definition 5.41. Let r(G, F) denote the set of all pairs (T, q) such that T is an F-stable
maximal torus of G and q 2 Irr(T). We say two pairs (T0, q0), (T, q) 2 r(G, F) are rationally
conjugate if there exists an element x 2 G such that T0 = xT and q0 = xq. This defines an
equivalence relation ⇠G on r(G, F) and we denote the set of all equivalence classes by
r(G, F)/G.

Exercise 5.42. Prove that if (T0, q0) ⇠G (T, q) then RG
T0(q

0) = RG
T (q). (Hint: Use Proposi-

tion 5.40 and (iv) from Theorem 5.27.)
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Shortly we will see that the converse of Exercise 5.42 is also true. Although we cannot
give a better description for RG

T (q) in general, we can give a considerably simpler descrip-
tion when q is the trivial character. For this we recall the notation concerning F-stable
maximal tori developed in Remark 4.19. Given w 2 WG(T0) we define the following alge-
braic subset of G associated to w

YG
w = L �1(ẇU0) = {g 2 G | g�1F(g) 2 ẇU0},

where U0 = Ru(B0). Let x 2 L �1(ẇU0) and t 2 bTw then xt 2 L �1(ẇU0) because

L (xt) = t�1L (x)F(t) 2 t�1ẇU0ẇ�1tẇ = ẇ(ẇ�1tẇ)�1U0(ẇ�1tẇ) = ẇU0,

where the last equality follows from the fact that ẇ�1tẇ 2 T0 6 NG(U0). In particular this
shows that bTw acts on YG

w by right multiplication. To each w 2 WG(T0) we can define the
variety XG

w = L �1(ẇU0)/bTw to be the affine quotient by the finite group bTw. Clearly the
finite group G acts on XG

w by left multiplication because for any x 2 Xw and g 2 G we have
L (gx) = L (x). We then have the following description for the Deligne–Lusztig character
RG

Tw
(1).

Proposition 5.43. For all w 2 W we have RG
Tw
(1)(g) = L(g, XG

w ) for any g 2 G.

Remark 5.44. We consider now whether the construction given above depends upon our
choice of representative ẇ for w. Assume ẅ 2 NG(T0) is another representative for w and
let T0w = g0T0 for some g0 2 G such that L (g0) = ẅ. By Example 4.17 we have Tw and T0w
are conjugate under G so by Exercise 5.42 we have RG

Tw
(1) = RG

T0w
(1). In particular this says

L(�, Xw) does not depend upon our choice of ẇ.

We will now go on to state two of the most important theorems regarding Deligne–
Lusztig characters, the first being a formula for computing their inner product. As a corol-
lary of this we will see that the converse to Exercise 5.42 holds.

Theorem 5.45. Given two pairs (T, q), (T0, q0) 2 r(G, F) we have the inner product of the
corresponding Deligne–Lusztig characters is

hRG
T (q), RG

T0(q
0)i = 1

|T| |{n 2 G | nT = T0 and nq = q0}|.

Corollary 5.46. We have two Deligne–Lusztig characters RG
T (q) and RG

T0(q
0) are orthogonal if

(T, q) 6⇠G (T0, q0), in particular RG
T (q) = RG

T0(q
0) if and only if (T, q) ⇠G (T0, q0).

Assume RG
T (q) and RG

T0(q
0) are orthogonal then as they are virtual characters they may

still have irreducible constituents in common. However if hRG
T (q), RG

T (q)i = 1 we must
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have ±RG
T (q) is an irreducible character of G. This naturally leads us to the following

definition.

Definition 5.47. Let T be an F-stable maximal torus of G then we say q 2 Irr(T) is in
general position if no element of WG(T)F fixes q.

Proposition 5.48. If w 2 WG(T0) and q 2 Irr(Tw) then the degree of RG
Tw
(q) is given by

(�1)`(w)RG
Tw
(q)(1) = [G : Tw]p0 . In particular, if q is in general position then (�1)`(w)RG

Tw
(q) 2

Irr(G).

By [G : Tw] we mean the finite group index of Tw in G. The subscript p0 is to denote
the largest divisor of the index which is coprime to p. We now wish to give our second
important theorem regarding Deligne–Lusztig characters. However, before we can do this
we need to recast our labelling set for Deligne–Lusztig characters in terms of the dual
group.

Definition 5.49. Let r?(G, F) denote the set of all pairs (T?, s) such that T? is an F?-stable
maximal torus of G? and s 2 T?. We say two pairs (T?0, s0), (T?, s) 2 r?(G, F) are rationally
conjugate if there exists an element x 2 G? such that T?0 = xT? and s0 = xs. This defines an
equivalence relation ⇠G? on r?(G, F) and we denote the set of all equivalence classes by
r?(G, F)/G?.

There is a strong relationship between the sets of equivalence classes r?(G, F)/G? and
r(G, F)/G. Recalling the notion of a dual maximal torus from Definition 4.34, we have the
following.

Lemma 5.50. We have a well-defined bijective correspondence

r(G, F)/G ! r?(G, F)/G?

such that (T, 1) 7! (T?, 1), where 1 denotes the trivial character of T or the identity in G?.

Assume (T, q) 2 r(G, F) corresponds to (T?, s) under the bijection in Lemma 5.50 then
we may write RG

T?(s) for RG
T (q) without ambiguity. We can now state the second main

result for Deligne–Lusztig characters.

Theorem 5.51. Suppose (T?0, s0), (T?, s) 2 r?(G, F) are two pairs such that s0 and s are not
conjugate in G? then the corresponding Deligne–Lusztig characters RG

T? 0(s0) and RG
T?(s) have no

irreducible constituent in common.

In particular, Theorem 5.51 and Proposition 5.48 tell us the following. Let {w1, . . . , wr}
be a set of representatives for the distinct F-conjugacy classes in H1(F, W). For each
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maximal torus Twi and irreducible character q 2 Irr(Twi) in general position we have
(�1)`(wi)RG

Twi
(q) will be an irreducible character of G and for distinct 1 6 i, j 6 r we

will have (�1)`(wi)RG
Twi

(q) 6= (�1)`(wj)RG
Twj

(q).

� Lusztig series and the Jordan decomposition of characters

Previously we observed that Deligne–Lusztig characters furnish us with many irre-
ducible characters of our finite reductive group G. However, it is not the case that every
class function of G can be written in terms of Deligne–Lusztig characters. More precisely,
we have the following. Let

CentDL(G) = spanQ`
{RG

T (q) | (T, q) 2 r(G, F)}

be the subspace of Cent(G) spanned by Deligne–Lusztig characters then it can happen that
CentDL(G) 6= Cent(G). We call the elements of CentDL(G) uniform class functions. Although
this subspace is usually proper, several important class functions are always uniform.

Lemma 5.52. The regular character of G is a uniform class function. In particular, as every irre-
ducible character of G occurs in the regular character we must have every irreducible character of G
occurs in some Deligne–Lusztig character.

We now use the Deligne–Lusztig characters to give an initial partitioning of the irre-
ducible characters of G. Using Theorem 5.51, we have two Deligne–Lusztig characters
RG

T? 0(s0) and RG
T?(s) have no irreducible constituents in common unless s0, s are in the same

G?-conjugacy class.

Definition 5.53. Let [s] = [s]G? be the G?-conjugacy class of semisimple elements contain-
ing s 2 G?. We define the Lusztig series of G associated to [s] to be the set

E(G, s) = E(G, [s]) = {c 2 Irr(G) | hc, RG
T?(s)i 6= 0 for some (T?, s) 2 r?(G, F)}.

Remark 5.54. We have chosen here to define the Lusztig series to be the so called rational
Lusztig series. However it should be noted that many people would define a Lusztig series
to be the geometric Lusztig series.

By Lemma 5.52 every irreducible character of G occurs in some Deligne–Lusztig char-
acter. Therefore by Theorem 5.51 the Lusztig series give a partition of the irreducible
characters of G

Irr(G) =
G

[s]
E(G, s),

where [s] runs over all G?-conjugacy classes of semisimple elements.
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Definition 5.55. If c 2 E(G, 1) then we call c a unipotent character of G.

Example 5.56. If G is GLn(q) then E(G, 1) is simply the irreducible constituents of the
Harish-Chandra induced character RG

T0
(1). In particular, E(G, 1) is parameterised by the

irreducible characters of the symmetric group Sn.

One of the crowning achievements of Lusztig was to relate the elements in the Lusztig
series E(G, s) to a set of unipotent characters. This result is typically refereed to as the Jor-
dan decomposition of characters and shows the prominant role played by the dual group.

Theorem 5.57 (Jordan decomposition of characters). Let G be any connected reductive alge-
braic group and s 2 G? a semisimple element such that the centraliser CG?(s) is connected. Then
CG?(s) is a connected reductive algebraic group with Frobenius endomorphism F? and we have a
bijection

E(G, s)! E(CG?(s), 1),

denoted c 7! cu, such that

hc, RG
T?(s)iG = ±hcu, RCG? (s)

T? (1)iCG? (s)

for all (T?, s) 2 r?(G, F)

Remark 5.58. We will not define this precisely here but merely remark that the sign ± can
be described explicitly using the notion of Fq-rank.

The condition that the centraliser CG?(s) is connected is crucial for this result to hold. If
this assumption is dropped then the theory we have developed here no longer applies and
even the definition of the set E(CG?(s), 1) does not make sense. However, using Clifford
theory, Lusztig has extended this result to the case where CG?(s) is disconnected but we will
not discuss this here. We finish with a condition that ensures CG?(s) is always connected.

Proposition 5.59. Assume the centre Z(G) of G is connected then CG?(s) is connected for every
semisimple element s 2 G?.
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