Exercise 7.1. Compute the weights of $\text{Sym}^2(C^3)$ as a representation of GL_3, and draw the Hasse diagram of the dominance order.

Exercise 7.2. Compute the multiset of weights of $(C^2)^\otimes 4$ as a representation of GL_2. Decompose this representation into irreducible representations.

Exercise 7.3. This exercise walks you through the decomposition of the 27-dimensional representation $V = (C^3)^\otimes 3$ of GL_3.

(a) Compute the multiset of weights of $\Lambda^2(C^3)$, and then the multiset of weights of $W = \Lambda^2(C^3) \otimes C^3$. Deduce that $W = L_{(2,1,0)} \oplus \Lambda^3(C^3)^{\pm m}$ for some unknown multiplicity m. If you know m, how do you compute the multiset of weights of $L_{(2,1,0)}$?

(b) With what multiplicity does $\Lambda^3(C^3)$ appear as a direct summand of V? [Hint: This one-dimensional representation can only appear as a summand of a particular six-dimensional weight space. The symmetric group $S_3 \subset GL_3$ acts in a particular way on this six-dimensional space, and on $\Lambda^3(C^3)$.

(c) Use part (b) to compute m and the weights of $L_{(2,1,0)}$.

(d) Now compute the decomposition of $\text{Sym}^2(C^3) \otimes C^3$ into irreducible representations.

(e) Now compute the decomposition of V into irreducible representations. [Hint: First decompose $C^3 \otimes C^3$, then tensor with C^3.

(f) (Come back after Lecture 8) Match your answer with the answer that Schur–Weyl duality gives.
Exercise 7.4. If G acts on V, then G acts on $V^* = \{ f : V \to \mathbb{C} \}$ by the formula $g \cdot f(v) = f(g^{-1}v)$.

(a) For $G = \text{GL}_2$ and $V = \mathbb{C}^2$, write down the matrix for the action of $g \in G$ on V^*, with respect to the dual standard basis.

(b) From this you might be able to guess the general formula which takes the matrix of g on a basis of V and produces the matrix of g on the dual basis of V^*. Prove that $(\mathbb{C}^n)^* \otimes \text{det}$ is a polynomial representation of GL_n, whereas $(\mathbb{C}^n)^*$ is only rational (for $n > 1$).

Exercise 7.5. Prove the classification of irreducible rational representations of GL_1.

Exercise 7.6. Let $\rho : \text{GL}_1 \to \text{GL}_2$ be a homomorphism given by

$$\rho(z) = \begin{pmatrix} z^k & r(z) \\ 0 & z^k \end{pmatrix}$$

for some $k \in \mathbb{Z}$ and some rational function $r(z)$. Deduce that $r = 0$. This does not prove the semisimplicity theorem for GL_1, but it certainly makes it believable. [Hint: Compare certain coefficients in $\rho(z)^2 = \rho(z^2)$.]

Exercise 7.7. Let $Z \subset \text{GL}_n$ be the group of scalar matrices; this is isomorphic to GL_1. Let V be a rational representation of GL_n and let $V = \bigoplus_{k \in \mathbb{Z}} V_k$ be the weight decomposition for Z. Show that each V_k is a GL-subrepresentation of V. We thus see that every rational GL-representation admits a canonical \mathbb{Z}-grading.

Exercise 7.8. Let V be a rational representation of GL_n.

(a) Let \langle , \rangle_0 be a Hermitian form on V. Define a new Hermitian form \langle , \rangle on V by the formula

$$\langle v, w \rangle = \int_{U_n} \langle gv, gw \rangle_0 dg.$$

Here $U_n \subset \text{GL}_n$ is the unitary group and dg is its Haar measure. Show that \langle , \rangle is GL_n-invariant, i.e., $\langle gv, gw \rangle = \langle v, w \rangle$ for $g \in \text{GL}_n$ and $v, w \in V$. [Hint: U_n is Zariski dense in GL_n.]

(b) Let W be a GL_n-subrepresentation of V and let W' be its orthogonal complement under \langle , \rangle. Show that W' is also a GL_n-subrepresentation and that $V = W \oplus W'$.

(c) Show that V decomposes as a direct sum of irreducible representations (Theorem ??).