A common theme in representation stability is that objects can be made simpler by applying a “shift” operation. This is true of \(\text{GL} \)-varieties, as we will see in this lecture. These results give us an inductive way to understand \(\text{GL} \)-varieties, and are among the most powerful tools we have.

We first define the shift operation. Let \(G(n) \) be the subgroup of \(\text{GL}_n \) consisting of matrices of the form
\[
\begin{pmatrix}
1 & 0 \\
0 & *
\end{pmatrix},
\]
where the top left block is \(n \times n \). Of course, \(G(n) \) is itself isomorphic to \(\text{GL}_n \). Given an object \(X \) on which \(\text{GL} \) acts, we can thus restrict to \(G(n) \) and then identify \(G(n) \) with \(\text{GL}_n \) to obtain a new action of \(\text{GL} \). This is called the \(n \)th shift of \(X \), and denoted \(\text{Sh}_n(X) \). For example, we have \(\text{Sh}_n(V) = C^n \oplus V \), and one can use this to figure out shifts of Schur functors, e.g.,
\[
\text{Sh}_n(\text{Sym}^2(V)) = \text{Sym}^2(C^n \oplus V) = \text{Sym}^2(C^n) \oplus (C^n \otimes V) \oplus \text{Sym}^2(V).
\]

The following is the embedding theorem:

Theorem 13.1. Let \(Y \) be a \(\text{GL} \)-variety, let \(\lambda \) be a non-empty partition, and let \(X \) be a closed \(\text{GL} \)-subvariety of \(Y \times A^\lambda \). Then one of the following two possibilities holds:

(a) \(X = Y_0 \times A^\lambda \) for some closed \(\text{GL} \)-subvariety \(Y_0 \subset Y \); or
(b) there is a non-empty open subset of \(\text{Sh}_n(X) \), for some \(n \), that embeds into \(\text{Sh}_n(Y) \times A^\mu \) for some \(\mu \), where every partition in \(\mu \) is smaller than \(\lambda \).

Before giving the proof, we illustrate the main idea in a special case.

Example 13.2. Let \(Y \) be a point, let \(\lambda = (2) \), and let \(X \) be the rank \(\leq 1 \) locus in \(A^{(2)} \). We think of elements of \(A^{(2)} \) as infinite symmetric matrices \(x \), and write \(x_{i,j} \) for the \((i,j)\) entry. Let \(U \subset X \) be the open set where \(x_{1,1} \) is non-zero; this is \(G(1) \)-stable. Suppose \(x \in U \). Then \(x \) has rank 1, and the first column is a basis for its column space. For \(i > 1 \), the \(i \)th column of \(x \) is a scalar multiple of the first column, and by looking at the first row we see that the scalar is \(x_{1,i}/x_{1,1} \). Thus we can solve for all entries in \(x \) in terms of the first row. This shows that \(\text{Sh}_1(U) \cong C^x \times A^{(1)} \)

as \(\text{GL} \)-varieties. Here the \(C^x \) is the \(x_{1,1} \) coordinate, and the \(A^{(1)} \) records the first row with \(x_{1,1} \) omitted. (Note that the first row with \(x_{1,1} \) omitted looks like \(A^{(1)} \) but with \(G(1) \)-acting; after shifting, we actually get \(A^{(1)} \) with \(\text{GL} \) acting.)
Proof of Theorem 13.1. The main idea is like the example: we will construct a function \(h \) such that on the \(h \neq 0 \) locus we can solve for many of the coordinates in terms of simpler coordinates. This will produce an embedding of the kind we want. We argue as follows:

- We prove the theorem just for \(\lambda = (2) \) for simplicity; the general argument is exactly the same, just with more complicated notation.
- Let \(R \) be the coordinate ring of \(Y \), so that \(R[x_{i,j}] \) is the coordinate ring of \(Y \times A^\lambda \) (where \(x_{i,j} = x_{j,i} \)). Let \(I \subset R[x_{i,j}] \) be the ideal for \(X \), let \(J_0 \) be its contraction to \(R \), and let \(J \) be the extension of \(J_0 \). We have \(J \subset I \) with equality if and only if we’re in case (a). Assume we’re not in case (a), so \(I \) is strictly larger than \(J \).
- We have seen that polynomial representation of \(GL_\infty \) are determined by their \(1^n \) weight spaces. Thus the \(1^n \) weight space of \(I \) is strictly larger than that for \(J_0 \) for some \(n \); let \(f \) be such a weight vector in \(I \) that’s not in \(J \).
- A \(1^n \) weight vector in \(R[x_{i,j}] \) can be written as a sum of terms of the form \(x_{i_1,j_1} \cdots x_{i_r,j_r}g \) where all indices are distinct and \(g \) is an \(1^S \)-weight vector of \(R \), where \(S = [n] \setminus \{i_1,j_1, \ldots, i_r,j_r\} \). Applying a permutation to \(f \), we can thus assume that \(f = hx_{n-1,n} + g \), where \(h \) is a non-zero \(1^{n-2} \)-weight vector in \(R[x_{i,j}] \) and the variable \(x_{n-1,n} \) does not appear in \(g \).
- In \((R[x_{i,j}]/I)[1/h] \), we have \(x_{n-1,n} = -g/h \). The variables appearing in the right side are of the form \(x_{i,j} \) or \(x_{n,i} \) or \(x_{n-1,i} \) where \(i, j \leq n-2 \); call these “small.” Thus applying permutations of \(\{n-1, n, n+1, \ldots\} \), we see that every \(x_{i,j} \) can be expressed in terms of small variables in this ring. In other words, we have a \(G(n) \)-equivariant surjection

\[
(R[x_{i,j}]_{1 \leq i,j \leq n-2}[1/h]) \otimes k[y_i,z_i]_{i \geq n-1} \rightarrow (R[x_{i,j}]/I)[1/h]
\]

where \(y_i \) maps to \(x_{n-1,i} \) and \(z_i \) to \(x_{n,i} \). Thus case (b) holds with \(\underline{\mu} = [(1),(1)] \).

The shift theorem is the following. For a function \(h \) on a variety \(X \), we let \(X[1/h] \) be the non-vanishing locus of \(h \).

Theorem 13.3. Let \(X \) be a \(GL \)-variety. Then there is \(n \geq 0 \) and a non-zero \(GL \)-invariant function \(h \) on \(Sh_n(X) \) such that \(Sh_n(X)[1/h] \) is isomorphic, as a \(GL \)-variety, to \(B \times A^\underline{\mu} \), where \(B \) is an ordinary (finite dimensional) variety and \(\underline{\mu} \) is a tuple of partitions.

Proof. Embed \(X \) into \(A^\underline{\mu} \) for some \(\underline{\mu} \). We proceed by induction on \(\underline{\mu} \). If \(\underline{\mu} \) only consists of empty partitions, the result is clear (we don’t need to shift or pass to an open set: we can just take \(B = X \) and \(\underline{\rho} \) to be empty). This is the base case of the induction.

Suppose now that \(\underline{\mu} \) contains some non-empty partition. Let \(N \) be the maximal size of a partition in \(\underline{\mu} \), let \(\lambda \) be a partition in \(\underline{\mu} \) of size \(N \), let \(\underline{\nu} \) be the remaining
part of μ and let $Y = A^\mu$. We have $X \subset Y \times A^\lambda$, so we are in the setting of the embedding theorem. In case (i), we have $X = Y_0 \times A^\lambda$ for some $Y_0 \subset A^\mu$. Since ν is smaller than μ, the shift theorem holds for Y_0 by induction; it is easy to see that it then holds for X. Now suppose we’re in case (ii). Then after shifting and passing to an open set, X embeds into $\text{Sh}_n(Y) \times A^\mu$, where every partition in σ is smaller than λ. This space has the form A^τ, where τ is smaller than μ. (All partitions in τ have size at most N, and the number of partitions in τ of size N is one less than the number in μ of size N.) Thus by induction, the shift theorem holds for subvarieties of A^τ, and so the result follows.

Exercises

Exercise 13.1. Let X be the closed GL-subvariety of $A^{[(1),(1)]}$ consisting of linearly dependent pairs. Explicitly verify the conclusion of the shift theorem in this case.

Exercise 13.2. Let X be the rank $\leq r$ locus in $A^{(2)}$. Explicitly verify the conclusion of the shift theorem in this case.

Exercise 13.3. Show that $\text{Sh}_n(S_\lambda)$ has the form $S_\lambda \oplus \cdots$, where the remaining terms are Schur functors of smaller degree.

Additional exercises

Exercise 13.4. Let X be a GL-variety. Show that the invariant function field $k(X)^{\text{GL}}$ is a finitely generated extension of k. (See Exercise 12.4 for the definition of $k(X)^{\text{GL}}$.) [Hint: use the shift theorem (Theorem 13.3).]

Exercise 13.5. Explicitly compute $\text{Sh}_n(S_\lambda)$ in terms of Littlewood–Richardson coefficients (if you know what these are).

Exercise 13.6. Let X be an affine GL-variety.

(a) Show that there is a natural surjective map of GL-varieties $\text{Sh}_n(X) \to X$. [Hint: this is induced by the canonical inclusion $V \to \text{Sh}_n(V)$.]

(b) Show that there is a dominant morphism $B \times A^\lambda \to X$ for some finite dimensional variety B and some tuple λ. [This says that X is “unirational up to a finite dimensional error.”]

Notes

The embedding theorem appeared implicitly in [Dr]. It was isolated as a standalone result in [BDES, §4] when it was realized how useful it can be. The shift theorem was proved in [BDES, §5]. See [BDES] for more details on the proofs.