1. Fill in the details in the computation of \(C(\sigma_1^n) \) that we did in the lecture. (In particular, check that the morphisms are correct.) Explain how this complex is related to the complex of problem 4 on the preliminary exercises. Use it to compute \(\text{HHH}(T(2, n)) \).

2. This exercise is about computing Hom spaces of Bott-Samelsons.

 (a) Show that the elementary Bott-Samelson bimodule \(B_i \) is self-dual (as an \(R-R \) bimodule). Deduce that if \(B \) and \(B' \) are Bott-Samelsons, then

 \[
 \text{Hom}(B, B') = \text{HHH}^0(B_r \otimes B'),
 \]

 where \(B_r \) is the reverse of \(B \); if \(B = B_{i_1} \cdots B_{i_k} \), then \(B_r = B_{i_k} \cdots B_{i_1} \). Explain how this is related to problem 2 of the preliminary exercises.

 (b) Use the MOY rules to compute the graded dimension of \(\text{Hom}(B_s, B_t) \), where \(s, t \in S^3 \).

 (c) Describe the space \(\text{Hom}(B_{12}, B_{21}) \) explicitly.

3. Consider the Rouquier complex of a positive crossing \(C(\sigma) \). Show that the maps \(X_1, X'_2 : C(\sigma) \to C(\sigma) \) given by multiplication by \(X_1 \) and \(X'_2 \) are homotopic. Deduce that \(\text{HHH}(L) \) can be naturally viewed as a module over \(\mathbb{Z}[X_1, \ldots, X_l] \), where \(l \) is the number of components of \(L \).

4. This exercise is about the full twist on \(n = 3 \) strands.

 (a) Let \(H = \sigma_1 \sigma_2 \sigma_1 \) be the half-twist. Compute \(C(H) \). (Hint: after cancellation, all relevant morphism spaces are 1-dimensional.)

 (b) By comparing with \(C(\sigma_2 \sigma_1 \sigma_2) \), deduce that \(\text{HHH} \) is invariant under the third Reidemeister move.

 (c) Let \(T = H^2 \) be the full twist. Compute the minimal complex for \(C(T) \) at the level of objects.

 (d) Consider the minimal form of \(C(T^k) \), with the homological grading renormalized so that the lowest nonzero term in the complex is in homological grading \(0 \). Show by induction that the only objects appearing in homological degrees \(0, \ldots, k \) are copies of \(B_{121} \).

5. Let \(\overline{\mathfrak{H}}_c \) and \(\mathfrak{H}_c \) be the rational Cherednik algebras associated to the Lie algebras \(\mathfrak{gl}_n \) and \(\mathfrak{sl}_n \) with parameter \(c \). Show that \(\overline{\mathfrak{H}}_c \simeq D \otimes \mathfrak{H}_c \), where \(D \) is an algebra generated by two elements \(x = \frac{1}{n} \sum x_i \) and \(y = \frac{1}{n} \sum y_i \) satisfying \([x, y] = 1 \). Similarly, show that \(\overline{M}_c \simeq M_c \otimes \mathbb{C}[x] \). Discuss how this is compatible with the relation between reduced and unreduced versions of \(\text{HHH} \).
6. Let \mathfrak{P}_c and \mathfrak{H}_c be the rational Cherednik algebras associated to the Lie algebras \mathfrak{gl}_n and \mathfrak{sl}_n with parameter c. Find explicit polynomials of degree m in the polynomial representation of $\mathfrak{P}_{m/n}$ which are annihilated by the action of the Dunkl operators when $m/n = 1/n$ and $m/n = 2/3$. (As discussed in the lecture, these generate the ideal $I_{m/n}$.)

7. The goal of this exercise is to give a hands-on proof of the symmetry of finite dimensional representations of \mathfrak{H}_c.

 (a) Let $\mathbf{h} = \frac{1}{2} \sum x_i y_i + y_i x_i, \mathbf{x} = \frac{1}{2} \sum x_i^2$, and $\mathbf{y} = \frac{1}{2} \sum y_i^2$. Show that \mathbf{h}, \mathbf{x} and \mathbf{y} generate an action of \mathfrak{sl}_2 on \mathfrak{H}_c. If p is a homogenous element of \mathfrak{P}_c, show that $[\mathbf{h}, p] = (\deg p)p$.

 (b) Use the decomposition from exercise 5 to construct analogous elements \mathbf{h}, \mathbf{x} and \mathbf{y} generating an action of \mathfrak{sl}_2 on \mathfrak{H}_c.

 (c) If v is a homogenous element of $M_{m/n}$, show that $\mathbf{h} \cdot v = (\deg v)v$, where $\deg v$ is the degree of v as a polynomial minus $(m-1)(n-1)$. (Hint: first do it for $v = 1$.)

 (d) Deduce that if $M_{m/n}$ is finite dimensional, it admits an involution ι which commutes with the action of S_n and satisfies $\deg \iota(v) = -\deg v$.

Supplementary Exercises

8. Using the formula for $[D_j, X_i]$ we derived in class, prove that $[[D_i, D_j], X_k] = 0$. Deduce that $[D_i, D_j] = 0$.

9. Let \mathbf{B} be a Bott-Samelson diagram on n strands. Show that $HH(\mathbf{B})$ is supported in a-gradings $-n+1, -n+3, \ldots, n-3, n-1$. Deduce the Morton-Franks-Williams inequality: if $\sigma \in \text{Br}_n$, then $HHH(\sigma)$ is supported in a gradings between $w - n + 1$ and $w + n - 1$, where w is the writhe of the braid (the number of positive crossings minus the number of negative crossings.)