MONDAY EXERCISE 1

Consider the polynomial

$$
f=6 x^{2}+4 x y-3 y^{2}+11 x-y+12 \in \mathbb{Q}\left[x^{ \pm 1}, y^{ \pm 1}\right]
$$

where \mathbb{Q} has the 3 -adic valuation.
(1) Compute trop (f).
(2) Draw a picture of $V(\operatorname{trop}(f)) \subset \mathbb{R}^{2}$.
(3) Give two other polynomials $g, h \in \mathbb{Q}\left[x^{ \pm 1}, y^{ \pm 1}\right]$ with $V(\operatorname{trop}(g))=$ $V(\operatorname{trop}(h))=V(\operatorname{trop}(f))$. Can you find one with $\operatorname{trop}(g) \neq \operatorname{trop}(f)$?
(4) Consider the lines given by the equations $h_{1}=0$ and $h_{2}=0$, where

$$
h_{1}=x-27
$$

and

$$
h_{2}=x-1
$$

What are $\operatorname{trop}\left(V\left(\left\langle f, h_{1}\right\rangle\right)\right)$ and $\operatorname{trop}\left(V\left(\left\langle f, h_{2}\right\rangle\right)\right)$? How do these relate to $V(\operatorname{trop}(f)) \cap V\left(\operatorname{trop}\left(h_{1}\right)\right)$ and $V(\operatorname{trop}(f)) \cap V\left(\operatorname{trop}\left(h_{2}\right)\right)$?

