MONDAY EXERCISE 2

Consider the ideal $I=\langle x+y+z\rangle \subseteq \mathbb{C}[x, y, z]$.
(1) Describe the matroid $\operatorname{Mat}_{1}(I)$ on the ground set $E_{1}=\{x, y, z\}$. A set S is independent in $\operatorname{Mat}_{1}(I)$ if there is no polynomial in I of degree one with support contained in S.
(a) List the independent sets of $\operatorname{Mat}_{1}(I)$.
(b) List the bases.
(c) What is the rank?
(d) List the circuits.
(e) List the flats, and draw the lattice of flats.
(2) Repeat the previous question for the matroid $\operatorname{Mat}_{2}(I)$ on the ground set $E_{2}=\left\{x^{2}, x y, x z, y^{2}, y z, z^{2}\right\}$.
(3) Do your answers change if we replace I by $\langle a x+b y+c z\rangle$ where a, b, c are arbitrary complex numbers?

1. Supplementary Exercises

(1) Describe and prove at least one cryptomorphism between different descriptions of a matroid. This means, for example, how to go between the bases and the circuits of a matroid, and showing that if the first set satisfies the basis axioms, then the second set obeys the circuit axioms.
(2) The Fano matroid is the matroid on $E=\{1,2,3,4,5,6,7\}$ with circuits $\{123,147,156,246,257,345,367\}$.
(a) Check that this obeys the circuit axioms.
(b) What are the bases of this matroid? What is the rank?
(c) Show that this is not realizable over a field of characteristic not equal to two.
The Fano matroid is actually realizable over \mathbb{F}_{2} : it is the matroid given by all nonzero vectors in \mathbb{F}_{2}^{3} (or equivalently in $\mathbb{P}_{\mathbb{F}_{2}}^{2}$). Google for pictures!
(3) A cocircuit of a matroid is a circuit of the dual matroid. List all the cocircuits for the matroids you have met so far (in the main exercise, or above). For a realizable matroid, a cocircuit is the set of vectors not on a hyperplane spanned by some of the vectors. Verify this in your examples.
(4) Show that if A is a $d \times n$ matrix of $\operatorname{rank} d$, and B is an $(n-d) \times n$ matrix with rows a basis for $\operatorname{ker}(A)$, then the minor of A indexed by a subset $B \subset\{1, \ldots, n\}$ of size d equals the minor of B indexed by $\{1, \ldots, n\} \backslash B$. This shows that the matroid given by the columns of B is the dual of the matroid given by the columns of A.
(5) Show that the bases of matroids obey the strong basis exchange axiom: For all $B_{1}, B_{2} \in \mathcal{B}(M)$, and all $i \in B_{1} \backslash B_{2}$, there is $j \in B_{2} \backslash B_{1}$ with $B_{1} \backslash\{i\} \cup\{j\}$ and $B_{2} \backslash\{j\} \cup\{i\}$ in $\mathcal{B}(M)$.

