THURSDAY EXERCISE 1

Let $V=\mathbb{T}^{4}$, and let $U=\operatorname{Hom}(V, \mathbb{T})$ be its linear dual. Let

$$
p=\sum_{i<j} p_{i j} e_{i} \wedge e_{j} \in \wedge^{2} V
$$

be a valuated matroid whose underlying matroid is the uniform matroid $U_{2,4}$ (i.e., all components of p are nonvanishing).
(1) Show that the image of $(-\wedge p)^{\vee}: \wedge^{d+1} U \rightarrow U$ is spanned by the circuit vectors of p.
(2) Use the circuits to give a presentation of the associated quotient module $\mathbb{T}^{4} \rightarrow Q_{p}$.
(3) Now, by wedging generating relations with basis vectors, find a presentation for $\wedge^{2} Q_{p}$. Using this presentation, show that $\wedge^{2} Q_{p} \cong \mathbb{B}$.
(4) Next, try the same for the valuated matroid
$(7) e_{1} \wedge e_{2}+(2) e_{1} \wedge e_{3}+(4) e_{1} \wedge e_{4}+(0) e_{2} \wedge e_{3}+(2) e_{2} \wedge e_{4}+(\infty) e_{3} \wedge e_{4}$.

Supplementary exercises

(1) If $p \in \wedge^{c} V$ and $q \in \wedge^{d} V$ are valuated matroids, show that their stable sum is represented by $p \wedge q$.
(2) Let $V=\mathbb{T}^{n}$, with basis $\left\{e_{i}\right\}$. Given $p=\sum_{|A|=d} p_{A} e_{A} \in \wedge^{d} V$, show that the circuit vectors of p^{*} can be written in the form

$$
\sum_{i \notin B} p_{B \cup i} e_{i} \in V
$$

for $|B|=d-1$.
(3) Find an example of a valuated matroid of rank d on $\{1, \ldots, n\}$ and two sets $A, A^{\prime} \subset\{1, \ldots, n\}$ of size $d+1$ that both produce the same circuit vector (up to scaling).

