THURSDAY EXERCISE 2 BERKOVICH SPACES, PART II

Let $K = \mathbb{C}(t)$ be the field of formal Laurent series equipped with the non-Archimedean norm $|-|:\mathbb{C}(t)\longrightarrow\mathbb{R}_{\geq 0}$ given by $\left|\sum_{n=n_0}^{\infty}a_nt^n\right|=e^{-n_0}$ when $a_{n_0}\neq 0$. Let

$$X = \operatorname{Spec} \mathbb{C}((t))[w] = \mathbb{A}^1_{\mathbb{C}((t))}$$

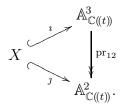
be the affine line over $\mathbb{C}((t))$. Let

$$i: X = \mathbb{A}^1_{\mathbb{C}((t))} \longrightarrow \mathbb{A}^3_{\mathbb{C}((t))} = \operatorname{Spec} \mathbb{C}((t))[x, y, z]$$

be the closed embedding dual to the homomorphism taking $x\mapsto w+t,$ $y\mapsto w-t,$ and $z\mapsto w+1-t.$ Let

$$j: X = \mathbb{A}^1_{\mathbb{C}((t))} \longrightarrow \mathbb{A}^2_{\mathbb{C}((t))} = \operatorname{Spec} \mathbb{C}((t))[x, y]$$

be the closed embedding obtained by composing i with the projection $\operatorname{pr}_{12}:\mathbb{A}^3_{\mathbb{C}((t))}\longrightarrow\mathbb{A}^2_{\mathbb{C}((t))}$ that forgets the z-coordinate. Note that we have a commutative diagram



- (1) Draw Trop(X, i) inside Trop $(\mathbb{A}^3_{\mathbb{C}((t))})$, and draw Trop(X, j) inside Trop $(\mathbb{A}^2_{\mathbb{C}((t))})$.
- (2) Explain what parts of the infinite tree inside the Berkovich affine line $X^{\mathrm{an}} = \mathbb{A}^{1,\mathrm{an}}_{\mathbb{C}((t))}$ collapse under the tropicalization map

$$\operatorname{trop}_{i}: X^{\operatorname{an}} \longrightarrow \operatorname{Trop}(X, i),$$

and likewise under tropicalization map

$$\operatorname{trop}_{j}: X^{\operatorname{an}} \longrightarrow \operatorname{Trop}(X, j).$$

What information in X^{an} is lost under the map

$$\operatorname{Trop}(\operatorname{pr}_{12}):\operatorname{Trop}(X,i)\longrightarrow\operatorname{Trop}(X,j)$$
?