THURSDAY EXERCISE 4

The Cox ring of \mathbb{P}^n is the polynomial ring $K[x_0, \ldots, x_n]$ with the standard grading $\deg(x_i) = 1$.

- (1) A homogeneous ideal $I \subset S := \overline{\mathbb{R}}[x_0, \ldots, x_n]$ is weakly tropical if $(IS_{x_i})_0 \subseteq (\overline{\mathbb{R}}[x_0, \ldots, x_n]_{x_i})_0 \cong \overline{\mathbb{R}}[y_0, \ldots, \hat{y_i}, \ldots, y_n]$ is a tropical ideal. Show that $\langle x_0 \oplus x_1, x_0^3, x_1^3 \rangle$ is weakly tropical for \mathbb{P}^1 , but not tropical.
- (2) The tropicalization trop(\mathbb{P}^2) can be obtained by gluing together three affine charts trop(\mathbb{A}^2) = $\overline{\mathbb{R}}^2$. Consider the ideal

 $\operatorname{trop}(\langle x_0^2 + x_0 x_1 + x_0 x_2 + 5 x_1 x_2 \rangle) \subset \overline{\mathbb{R}}[x_0, x_1, x_2],$

where \mathbb{Q} has the 5-adic valuation. Compute the localizations $I_i = (I\overline{\mathbb{R}}[x_0, x_1, x_2]_{x_i})_0$ for each $0 \leq i \leq 2$, and draw the corresponding tropical varieties $V(I_i) \subset \overline{\mathbb{R}}^2$. Glue these to get a subvariety of trop(\mathbb{P}^2). Compare this with the result of computing V(I) in $\overline{\mathbb{R}}^3$, and taking the image in trop(\mathbb{P}^2) = $(\overline{\mathbb{R}}^3 \setminus (\infty, \infty, \infty))/\mathbb{R}(1, 1, 1)$ (it should be the same!).

The Cox ring of $\mathbb{P}^1 \times \mathbb{P}^1$ is $K[x_0, x_1, y_0, y_1]$ with the grading deg $(x_i) = (1, 0)$, deg $(y_i) = (0, 1)$.

(3) Repeat the previous exercise for the ideal

 $\operatorname{trop}(\langle x_0y_0 + x_1y_0 + x_0y_1 + x_1y_1 \rangle) \subseteq \overline{\mathbb{R}}[x_0, x_1, y_0, y_1].$

THURSDAY EXERCISE 4

SUPPLEMENTARY EXERCISES

- (1) (For people who have seen toric varieties). The tropical toric variety associated to a rational polyhedral fan $\Sigma \subset N_{\mathbb{R}}$ is defined as follows: For $\sigma \in \Sigma$, the tropicalization U_{σ}^{trop} is $\text{Hom}_{sg}(\sigma^{\vee} \cap M, \overline{\mathbb{R}})$. If τ is a face of σ , then σ^{\vee} is a submonoid of τ^{\vee} , so there is a map from U_{τ}^{trop} to $U\sigma^{\text{trop}}$ given by $f \mapsto f|_{\sigma^{\vee}}$. The tropical toric variety $\text{trop}(X_{\Sigma})$ is obtained by gluing together the U_{σ}^{trop} along these maps.
 - (a) Draw the tropical toric variety $\operatorname{trop}(\mathbb{P}(1,2,3))$. This has the fan with three rays $\{(1,0), (0,1), (-2,-3)\}$, each pair of which spans a two-dimensional cone.
 - (b) Compute the tropicalization of the variety $V(x_1^6 + 3x_1^4x_2 + 2x_2^3 x_1^3x_3 + 7x_1x_2x_3) \subseteq \mathbb{P}(1, 2, 3)$ under the trivial valuation.
 - (c) Compare this with tropicalization of this as an affine variety in \mathbb{A}^3 .
 - (d) Generalise what you observe (this can be viewed as tropicalizing the Cox construction of a toric variety as a GIT quotient of affine space).
- (2) (For people who like more abstraction). Look at Lorscheid's paper https://arxiv.org/abs/1907.01037. Understand the tropical hyperfield from this perspective, and how this relates to scheme-theoretic tropicalization.