TUESDAY EXERCISE 1

Consider the matrix

$$
A=\left(\begin{array}{rrrr}
1 & 0 & 7 & -1 \\
0 & 1 & 3 & 5
\end{array}\right)
$$

Let M be the valuated matroid given by setting $\rho:\binom{\{1,2,3,4\}}{2} \rightarrow \overline{\mathbb{R}}$ to be $\rho(I)=\operatorname{val}\left(\operatorname{det}\left(A_{I}\right)\right)$, where A_{I} is the submatrix of A with columns indexed by I, and val is the 2 -adic valuation on \mathbb{Q}.
(1) Write down these minors explicitly.
(2) What is the underlying (non-valuated) matroid of M ?
(3) List the valuated circuits of M. Verify one example of valuated circuit elimination for your list.
(4) Give an example of a vector of M that is not a circuit.
(5) Draw the collection of all vectors of M in $\overline{\mathbb{R}}^{4} / \mathbb{R} \mathbf{1}$.

1. Supplementary Exercises

(1) Repeat the main exercise with the p-adic valuation on \mathbb{Q}, where p is an odd prime of your choice.
(2) Let M be a valuated matroid with basis function $\rho:\binom{E}{d}$. Show that every circuit of M has the form

$$
\sum_{i \in C} \rho(C \backslash i) \mathbf{e}_{i}
$$

for some set $C=B \cup\{j\}$, where B is a basis of M.
(3) Describe the cryptomorphism from circuits to basis functions. In other words, explain how to write down $\rho:\binom{E}{d} \rightarrow \overline{\mathbb{R}}$ given a collection $\mathcal{C} \subset \overline{\mathbb{R}}^{E}$.
(4) Valuated matroids also have duality. Show that if $\rho:\binom{E}{d} \rightarrow \overline{\mathbb{R}}$ is a basis function, then so is $\rho^{\prime}:\binom{E}{|E|-d} \rightarrow \overline{\mathbb{R}}$ given by

$$
\rho^{\prime}(B)=\rho(E \backslash B)
$$

(5) The cocircuits of a valuated matroid M are the circuits of the dual matroid M^{*}. Show that if $\mathbf{v} \in \overline{\mathbb{R}}^{E}$ is tropically orthogonal to all vectors of M (the minimum in $\min _{i}\left(v_{i}+u_{i}\right)$ is achieved at least twice for all vectors \mathbf{u}) then \mathbf{v} is a tropical linear combination of cocircuits of M.
(6) Describe all valuated matroids of rank 2 on $E=\{1,2,3,4\}$ with underlying matroid the uniform matroid (so $\rho(B) \neq \infty$ for all $B \in\binom{E}{2}$). You can regard $\rho:\binom{E}{2} \rightarrow \overline{\mathbb{R}}$ as a vector in $\overline{\mathbb{R}}^{6}$. Describe this subset. What does this have to do with the Grassmannian?

