Consider the ideal

\[I = \langle 24x^2 - xy + 8y^2 + 6xz - 10yz + 11z^2 \rangle \subseteq \mathbb{Q}[x, y, z], \]

where \(\mathbb{Q} \) has the 2-adic valuation.

(1) Draw the Gröbner complex of \(\text{trop}(I) \subseteq \mathbb{R}[x, y, z] \).

(2) What is the Hilbert function of \(\text{trop}(I) \)? What is the Hilbert polynomial? What is the dimension of \(\text{trop}(I) \)?

(3) Give a chain of tropical ideals of length 5 containing \(\text{trop}(I) \). How many different varieties are there of ideals in your chain?
1. Supplementary Exercises

(1) If \(I \subseteq \mathbb{R}[x_0, \ldots, x_n] \) is a homogeneous tropical ideal, then \(\text{in}_w(I) \subseteq \mathbb{B}[x_0, \ldots, x_n] \) is a homogeneous tropical ideal, so each degree \(d \) part defines a (non-valuated) matroid \(\text{Mat}(\text{in}_w(I)) \).

(a) We define the \(w \) weight of a basis \(B \) of the degree \(d \) matroid to be \(\sum_{i \in B} w_i - \rho(B) \), where \(\rho \) is the basis valuation function for the valuated matroid of \(\text{Mat}(I_d) \). Show that the bases of \(\text{Mat}(\text{in}_w(I)_d) \) are the bases of \(\text{Mat}(I_d) \) of maximal weight.

(b) Show that the circuits of \(\text{Mat}(\text{in}_w(I)_d) \) are those initial terms of circuits of \(\text{Mat}(I_d) \) that have minimal support.

(2) (If you know what a matroid polytope is). Compare the matroid polytope of the underlying matroid of \(\text{Mat}(I_d) \) and the matroid polytope of \(\text{Mat}(\text{in}_w(I)_d) \). If you know what a regular subdivision is, how is that relevant here?

(3) Show that a tropical ideal is not necessarily determined by a finite set of degrees. Hint: Monday Exercise 4, supplementary 3.

(4) Tropical ideals obey the weak Nullstellensatz: \(V(I) = \emptyset \) if and only if \(I = \langle 0 \rangle \). Give an example to show that this is false for an arbitrary ideal in \(\mathbb{R}[x_1, \ldots, x_n] \).

(5) Let \(I \) be a non-homogeneous tropical ideal in \(\mathbb{R}[x] \). This means that for any finite collection \(E \) of monomials in \(\mathbb{R}[x] \), the set of polynomials in \(I \) supported in \(E \) is the set of vectors of a valuated matroid. Let \(f \) be a polynomial in \(I \) of lowest degree. Show that \(V(I) = V(f) \).