TUESDAY LECTURE 3

Consider the ideal $I = \langle 24x^2 - xy + 8y^2 + 6xz - 10yz + 11z^2 \rangle \subseteq \mathbb{Q}[x, y, z]$, where \mathbb{Q} has the 2-adic valuation.

- (1) Draw the Gröbner complex of $\operatorname{trop}(I) \subseteq \overline{\mathbb{R}}[x, y, z]$.
- (2) What is the Hilbert function of trop(I)? What is the Hilbert polynomial? What is the dimension of trop(I)?
- (3) Give a chain of tropical ideals of length 5 containing trop(I). How many different varieties are there of ideals in your chain?

TUESDAY LECTURE 3

1. Supplementary Exercises

- (1) If $I \subseteq \overline{\mathbb{R}}[x_0, \ldots, x_n]$ is a homogeneous tropical ideal, then $\operatorname{in}_{\mathbf{w}}(I) \subseteq \mathbb{B}[x_0, \ldots, x_n]$ is a homogeneous tropical ideal, so each degree d part defines a (non-valuated) matroid $\operatorname{Mat}(\operatorname{in}_{\mathbf{w}}(I))$.
 - (a) We define the **w** weight of a basis B of the degree d matroid to be $\sum_{i \in B} w_i \rho(B)$, where ρ is the basis valuation function for the valuated matroid of $\operatorname{Mat}(I_d)$. Show that the bases of $\operatorname{Mat}(\operatorname{in}_{\mathbf{w}}(I)_d)$ are the bases of $\operatorname{Mat}(I_d)$ of maximal weight.
 - (b) Show that the circuits of $Mat(in_{\mathbf{w}}(I)_d)$ are those initial terms of circuits of $Mat(I_d)$ that have minimal support.
- (2) (If you know what a matroid polytope is). Compare the matroid polytope of the underlying matroid of $Mat(I_d)$ and the matroid polytope of $Mat(in_{\mathbf{w}}(I)_d)$. If you know what a regular subdivision is, how is that relevant here?
- (3) Show that a tropical ideal is not necessarily determined by a finite set of degrees. Hint: Monday Exercise 4, supplementary 3.
- (4) Tropical ideals obey the weak Nullstellensatz: $V(I) = \emptyset$ if and only if $I = \langle 0 \rangle$. Give an example to show that this is false for an arbitrary ideal in $\overline{\mathbb{R}}[x_1, \ldots, x_n]$.
- (5) Let I be a non-homogeneous tropical ideal in $\mathbb{R}[x]$. This means that for any finite collection E of monomials in $\mathbb{R}[x]$, the set of polynomials in I supported in E is the set of vectors of a valuated matroid. Let f be a polynomial in I of lowest degree. Show that V(I) = V(f).