TUESDAY LECTURE 3

Consider the ideal $I=\left\langle 24 x^{2}-x y+8 y^{2}+6 x z-10 y z+11 z^{2}\right\rangle \subseteq \mathbb{Q}[x, y, z]$, where \mathbb{Q} has the 2 -adic valuation.
(1) Draw the Gröbner complex of $\operatorname{trop}(I) \subseteq \overline{\mathbb{R}}[x, y, z]$.
(2) What is the Hilbert function of $\operatorname{trop}(I)$? What is the Hilbert polynomial? What is the dimension of $\operatorname{trop}(I)$?
(3) Give a chain of tropical ideals of length 5 containing trop (I). How many different varieties are there of ideals in your chain?

1. Supplementary Exercises

(1) If $I \subseteq \overline{\mathbb{R}}\left[x_{0}, \ldots, x_{n}\right]$ is a homogeneous tropical ideal, then $\mathrm{in}_{\mathbf{w}}(I) \subseteq \mathbb{B}\left[x_{0}, \ldots, x_{n}\right]$ is a homogeneous tropical ideal, so each degree d part defines a (non-valuated) matroid $\operatorname{Mat}\left(\mathrm{in}_{\mathbf{w}}(I)\right)$.
(a) We define the \mathbf{w} weight of a basis B of the degree d matroid to be $\sum_{i \in B} w_{i}-\rho(B)$, where ρ is the basis valuation function for the valuated matroid of $\operatorname{Mat}\left(I_{d}\right)$. Show that the bases of $\operatorname{Mat}\left(\mathrm{in}_{\mathrm{w}}(I)_{d}\right)$ are the bases of $\operatorname{Mat}\left(I_{d}\right)$ of maximal weight.
(b) Show that the circuits of $\operatorname{Mat}\left(\mathrm{in}_{\mathbf{w}}(I)_{d}\right)$ are those initial terms of circuits of $\operatorname{Mat}\left(I_{d}\right)$ that have minimal support.
(2) (If you know what a matroid polytope is). Compare the matroid polytope of the underlying matroid of $\operatorname{Mat}\left(I_{d}\right)$ and the matroid polytope of $\operatorname{Mat}\left(\mathrm{in}_{\mathbf{w}}(I)_{d}\right)$. If you know what a regular subdivision is, how is that relevant here?
(3) Show that a tropical ideal is not necessarily determined by a finite set of degrees. Hint: Monday Exercise 4, supplementary 3.
(4) Tropical ideals obey the weak Nullstellensatz: $V(I)=\emptyset$ if and only if $I=\langle 0\rangle$. Give an example to show that this is false for an arbitrary ideal in $\overline{\mathbb{R}}\left[x_{1}, \ldots, x_{n}\right]$.
(5) Let I be a non-homogeneous tropical ideal in $\overline{\mathbb{R}}[x]$. This means that for any finite collection E of monomials in $\overline{\mathbb{R}}[x]$, the set of polynomials in I supported in E is the set of vectors of a valuated matroid. Let f be a polynomial in I of lowest degree. Show that $V(I)=V(f)$.

