TUESDAY EXERCISE 4 BERKOVICH SPACES, PART I

Let K be an algebraically closed field that is topologically complete with respect to a non-trivial norm $|-|: K \longrightarrow \mathbb{R}_{>0}$. Let K[x] denote the polynomial ring in a single variable. The Zariski spectrum of K[x] is the affine line \mathbb{A}^1_K . In this exercise, we explore the geometry of the Berkovich analytification $\mathbb{A}_{K}^{1,\mathrm{an}}$, often called the Berkovich affine line.

Let $f(x) = \sum_{n=0}^{d} a_n x^n \in K[x]$. For each $r \in \mathbb{R}_{>0}$ we define a map

$$|-|_{0,r}:K[x]\longrightarrow \mathbb{R}_{\geq 0}$$

$$|f|_{0,r} := \max\{|a_n|r^n\}_{n=0}^d$$

 $|f|_{0,r}:=\max\bigl\{|a_n|r^n\bigr\}_{n=0}^d,$ where the usual norm |-| on K is being applied to each coefficient.

- (1) Prove that $|-|_{0,r}$ is a seminorm on K[x].
- (2) **Bonus:** Prove that $|-|_{0,r}$ is multiplicative.
- (3) Assuming that each seminorm $|-|_{0,r}$ is multiplicative, show that the family of seminorms $\{|-|_{0,r}\}_{r\in\mathbb{R}_{>0}}$ gives an inclusion of sets

$$\mathbb{R}_{>0} \hookrightarrow \mathbb{A}_K^{1,\mathrm{an}}.$$

- (4) **Bonus:** Show that the map $\mathbb{R}_{>0} \hookrightarrow \mathbb{A}_K^{1,\mathrm{an}}$ realizes $\mathbb{R}_{>0}$ as a subspace of $\mathbb{A}_K^{1,\mathrm{an}}$
- (5) For each $a \in K$ and $r \in \mathbb{R}_{>0}$, define a map $|-|_{a,r}: K[x] \longrightarrow \mathbb{R}_{\geq 0}$ according to the following rule. Given a polynomial $f(x) \in K[x]$, let $\sum_{n=0}^{d} a_n(x-a)^n$ denote the expansion of f(x) about a, and define

$$|f|_{a,r} := \max\{|a_n|r^n\}_{n=0}^d.$$

Prove that the seminorms $|-|_{0,r}$ and $|-|_{a,r}$ are distinct if r < |a|, and are identical if $r \geq |a|$. What does this imply about the geometry of $\mathbb{A}_K^{1,\mathrm{an}}$?