WEDNESDAY EXERCISE 1 TROPICAL IDEALS, PART 3

In this exercise we will look at three different ideals in $\mathbb{T}[x, y, z]$. There is (1) the principal ideal $\langle x + y + z \rangle$, (2) the Maclagan-Rincon tropical ideal, and (3) the tropical ideal [x + y + z] constructed using stable sum.

- (1) In degree 2, what are the elements in [x+y+z] that are not in $\langle x+y+z\rangle$?
- (2) Let MR_2 denote the (trivially valued) matroid of the Maclagan-Rincon ideal in degree 2.
 - (a) What are the bases and co-bases (complements of bases)?
 - (b) What are the circuits?
 - (c) What are the co-circuits?
- (3) Show that the Maclagan-Rincon tropical ideal in $\mathbb{T}[x, y, z]$ agrees with the tropical ideal [x + y + z] in degrees 1 and 2.
- (4) If you have time, try degree 3.

SUPPLEMENTARY EXERCISES

- (1) Given a vector $v \in \mathbb{T}^n$, we can think of this as representing a valuated matroid of rank 1 with basis valuation function $\rho_v(i) = v_i$. Given a second vector u, show that the basis valuation function for the stable sum $\rho_u \oplus^{st} \rho_v$ is given by sending $\{i, j\}$ to the corresponding permanent of the $2 \times n$ matrix with rows u and v.
- (2) Show that the tropical hypersurfaces (i.e., tropical curves) in $\mathbb{P}^2_{\mathbb{T}}$ associated with the elements in the degree 2 part of [x + y + z] all contain the tropical line defined by x + y + z.
- (3) Now can you do this with x + y + z replaced by an arbitrary homogeneous polynomials f of degree d?
- (4) What is the matroid in degree 1 for the Maclagan-Rincon tropical ideal in $\mathbb{T}[x_0, x_1, x_2, x_3]$?
- (5) Let $f = x^3 + x^2y + Cxy^2 + y^3 \in \mathbb{T}[x, y]$ for some nonvanishing $C \in \mathbb{T}$. Show that the tropical ideal [f] is not the tropicalization of any ideal over a field of characteristic 2. (*Hint: Look at Plücker coordinates in degree 5.*)