WEDNESDAY EXERCISE 1 TROPICAL IDEALS, PART 3

In this exercise we will look at three different ideals in $\mathbb{T}[x, y, z]$. There is (1) the principal ideal $\langle x+y+z\rangle$, (2) the Maclagan-Rincon tropical ideal, and (3) the tropical ideal $[x+y+z]$ constructed using stable sum.
(1) In degree 2, what are the elements in $[x+y+z]$ that are not in $\langle x+y+z\rangle$?
(2) Let $M R_{2}$ denote the (trivially valued) matroid of the Maclagan-Rincon ideal in degree 2.
(a) What are the bases and co-bases (complements of bases)?
(b) What are the circuits?
(c) What are the co-circuits?
(3) Show that the Maclagan-Rincon tropical ideal in $\mathbb{T}[x, y, z]$ agrees with the tropical ideal $[x+y+z]$ in degrees 1 and 2 .
(4) If you have time, try degree 3.

Supplementary exercises

(1) Given a vector $v \in \mathbb{T}^{n}$, we can think of this as representing a valuated matroid of rank 1 with basis valuation function $\rho_{v}(i)=v_{i}$. Given a second vector u, show that the basis valuation function for the stable sum $\rho_{u} \oplus^{s t} \rho_{v}$ is given by sending $\{i, j\}$ to the corresponding permanent of the $2 \times n$ matrix with rows u and v.
(2) Show that the tropical hypersurfaces (i.e., tropical curves) in $\mathbb{P}_{\mathbb{T}}^{2}$ associated with the elements in the degree 2 part of $[x+y+z]$ all contain the tropical line defined by $x+y+z$.
(3) Now can you do this with $x+y+z$ replaced by an arbitrary homogeneous polynomials f of degree d ?
(4) What is the matroid in degree 1 for the Maclagan-Rincon tropical ideal in $\mathbb{T}\left[x_{0}, x_{1}, x_{2}, x_{3}\right] ?$
(5) Let $f=x^{3}+x^{2} y+C x y^{2}+y^{3} \in \mathbb{T}[x, y]$ for some nonvanishing $C \in \mathbb{T}$. Show that the tropical ideal $[f]$ is not the tropicalization of any ideal over a field of characteristic 2. (Hint: Look at Plücker coordinates in degree 5.)

