
Project Summary – Ben Elias

Ben Elias intends to study geometric representation theory and categorification. Categorification
takes useful algebras and replaces them with categories which possess a richer structure. Ben is
specifically interested in describing the morphism spaces in these categories explicitly. Geometric
representation theory provides a plethora of interesting categories to study, and has much to say
about the general properties of objects in these categories, but does not have many techniques
which allow one to understand the morphisms easily. Ben plans to use diagrammatic algebra to
unravel these morphisms, and explore what this understanding might yield for the general theory.

The Hecke algebra of the symmetric group has a categorification by Soergel bimodules (see
[So1, So2, So3]), which relates the category of perverse sheaves on the flag variety to category O for
sln. A diagrammatic presentation of this category was given by Ben Elias and Mikhail Khovanov
in [EKh]. Ben has already used these diagrammatics to give explicit descriptions of various natural
categories and isomorphisms appearing in geometric representation theory (see [El1, El2, EKr]).
He plans on continuing to use this description to study Kazhdan-Lusztig theory and cellular theory.

The quantum group of a Kac-Moody lie algebra is another algebra which has been successfully
categorified and diagrammaticized (see [KL1, KL2, Ro2]). Ben plans on continuing to study this
category, looking at crystal structures (see [LV, We, KP]) and at connections to Soergel theory (see
[MSV]).

Numerous other geometric setups exist that Ben intends to learn about while at MIT. These
include character sheaves, coherent perverse sheaves, Cherednik algebras and W -algebras. He would
like to study natural transformations between functors in these setups as well.

Intellectual Merit
• The Kazhdan-Lusztig conjecture and its analogs have been fundamental motivations in geometric

representation theory. With this explicit description of the Soergel category, one has a chance to
find a purely algebraic proof of the Kazhdan-Lusztig conjecture, for which there are currently only
geometric proofs.
• Finding idempotents in the Soergel category explicitly and looking at the coefficients which appear,

one can study geometry in specific finite characteristics, where the decomposition theorem fails and
geometric techniques are not as well developed (see [BBD, JMW]).
• Categorified representations of sl2 are ubiquitous, in geometry and modular representation theory

among other places, and Chuang and Rouquier used the morphisms in these categorifications to
find interesting derived equivalences, proving the Broué conjecture (see [CR]). Categorified rep-
resentations of the Hecke algebra and the symmetric group are equally ubiquitous, and a similar
structural theory could potentially prove results in many fields.
• Affine Hecke algebras appear in the geometric Satake correspondence and in the geometric Lang-

lands program. Pending the ability to extend this calculus to arbitrary Hecke algebras, it could
open up a wealth of applications to these exciting fields. Other Hecke algebras, as well as higher
categorifications thereof, appear in topological quantum field theory (see [BFN] for instance).

Broader Impacts
• Diagrammatic algebras are very easy to work with compared to sophisticated geometric techniques.

They provide accessible problems even to undergraduates, as demonstrated by a series of REUs at
Columbia. Developing this theory could make numerous developments in geometric representation
theory more accessible to a broad class of mathematicians.
• Soergel bimodules are also useful for studying knot theory, as shown by Khovanov [Kh2]. The work

of Ben Elias and Dan Krasner [EKr] as well as current work with Pedro Vaz could help make the
categorification of the HOMFLY-PT invariant incredibly explicit. This could lead to more effective
computational tools, and a reasonable study of functoriality in knot homology theories.
• Categorification has deep connections with physics and topological quantum field theory. Diagram-

matics may provide a new way to study results in those fields.
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