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1. Introduction

My interests lie primarily in geometric representation theory, and more specifically in diagrammatic
categorification. Geometric representation theory attempts to answer questions about representation theory
by studying certain algebraic varieties and their categories of sheaves. Diagrammatics provide an efficient
way of encoding the morphisms between sheaves and doing calculations with them, and have also been
fruitful in their own right. I have been applying diagrammatic methods to the study of the Iwahori-Hecke
algebra and its categorification in terms of Soergel bimodules, as well as the categorifications of quantum
groups; I plan on continuing to research in these two areas. In addition, I would like to learn more about
other areas in geometric representation theory, and see how understanding the morphisms between sheaves
or the natural transformations between functors can help shed light on the theory. After giving a general
overview of the field, I will discuss several specific projects.

In the most naive sense, a categorification of an algebra (or category) A is an additive monoidal category
(or 2-category) A whose Grothendieck ring is A. Relations in A such as xy = z + w will be replaced by
isomorphisms X⊗Y ∼= Z⊕W . What makesA a richer structure than A is that these isomorphisms themselves
will have relations; that between objects we now have morphism spaces equipped with composition maps.
2-category). In their groundbreaking paper [CR], Chuang and Rouquier made the key observation that some
categorifications are better than others, and those with the “correct” morphisms will have more interesting
properties. Independently, Rouquier [Ro2] and Khovanov and Lauda (see [KL1, La, KL2]) proceeded to
categorify quantum groups themselves, and effectively demonstrated that categorifying an algebra will give
a precise notion of just what morphisms should exist within interesting categorifications of its modules. The
question of what makes an “interesting” categorification in general (and just what structures one can hope
for on the categorification) is very vague at the moment, but has led to some exciting mathematics.

Geometric representation theory gives an abundant source of interesting categorifications, including all
those mentioned above. Instead of studying an algebra A directly, one produces a system of algebraic varieties
with maps between them that “encodes” the algebra. Then, one can apply a plethora of tools to this setup.
Using a basic tool like constructible functions or cohomology, one recovers the algebra A. Other tools, like
the category of constructible sheaves or perverse sheaves, will yield categorifications of A. Typically, one can
use the same setup to categorify the irreducible A-modules. One would expect geometric categorifications
to have every property one could desire, since they are constructed so naturally. It is typically very easy
to understand the objects in geometry, i.e. to show abstractly that there exists an isomorphism of sheaves
X ⊗ Y ∼= Z ⊕W , or to classify irreducible sheaves. What is often difficult, especially when working with
singular spaces, is to understand morphisms between sheaves, e.g. to classify Ext∗ between perverse sheaves
and how these extensions compose.

However, geometry has one additional benefit: in optimal setups (where the ambient varieties are smooth
and the maps are proper, etc.) the categories which appear are biadjoint cyclic 2-categories. These are
precisely the kinds of categories which can be studied with planar diagrams. A picture can represent a
2-morphism in an isotopy-invariant way, so that they can be drawn as decorated planar graphs. Relations
between morphisms can often be intuitively expressed in terms of equalities of diagrams, and proofs thus
reduced to simple graph theory. Planar diagrams are an efficient and comprehensible method of giving a 2-
category by generators and relations; while it takes an expert to perform calculations with perverse sheaves,
calculations with planar diagrams have even provided interesting research questions for undergraduates.

Planar diagrams also more than just tools for expressing morphisms in geometric categorifications. A
number of diagrammatic categorifications are beginning to appear which are not linked to geometry. Re-
cently, Khovanov [Kh1] gave a diagrammatic categorification that should conjecturally correspond to a setup

1



Research Statement Ben Elias October 2010

in super-geometry (“varieties” associated to non-commutative super-algebras) for which the geometric meth-
ods are not yet in place. Khovanov and Lauda’s diagrams for the full quantum group in [KL2] can only be
derived from infinite-dimensional non-proper geometry, where again geometric techniques are insufficient.
Discovering categorifications by generators and relations has the opposite advantages to the geometric ap-
proach. The morphisms are well-understood, and abstract properties of the categorification may be more
easily proven. However, it is tricky even to know which objects are nonzero, and because one must take an
idempotent completion, it is also difficult to classify indecomposables.

Finally, the diagrams themselves may be interesting in their own right. In the categorification of Hecke
algebras described below, the planar diagrams appearing are actually 2D holograms of 3D singular spaces
known as foams, and thus also encode interesting topological data.

The hope is that by explicitly describing categorifications using planar diagrams, one can pin down just
what it is in the morphisms which makes those categorifications interesting. Working backwards, these
structures may teach us something new about geometry.

2. Plans and Projects

2.1. Categorical Hecke Theory. For every Coxeter group there is an associated Iwahori-Hecke algebra
H, which deforms the group algebra of the Coxeter group. This algebra is fundamental in many areas of
mathematics, from number theory to knot theory; it is also a crucial link between geometry and representation
theory. In Lie type, the regular representation of H is isomorphic to the Grothendieck group of two different
categories: perverse sheaves on the flag variety P, and a category O associated the Lie algebra. In each case,
H itself is categorified by a category of endofunctors. Therefore, structure coefficients in H encode data
about multiplicities in both P and O. In finite type and characteristic 0, the Kazhdan-Lusztig basis of H is
the image of both the simples in P and the projectives in O, yielding an equality of multiplicities known as
the Kazhdan-Lusztig conjectures. There are analogous statements in other types and characteristics which
are still unproven. Moreover, no simple algebraic proof of the Kazhdan-Lusztig conjectures is known.

Soergel [So1, So2] explained this link on the categorical level by finding a graded polynomial ring R
and a functor from both P and O to R-modules. The image of the endofunctors associated to H forms
a full subcategory of R-bimodules, known as Soergel bimodules B, and it also categorifies H. It is easier
to understand morphisms between R-bimodules than in these other categories, but the morphisms can
still become exceedingly complex. The Kazhdan-Lusztig conjecture now boils down to questions about
indecomposables in B and their image in the Grothendieck group, which is the topic of the Soergel conjecture
(see [So3]). The category B contains a subcategory BBS of Bott-Samelson bimodules, which come from the
perverse sheaves associated to certain smooth resolutions of Schubert varieties. The category BBS is simpler
still, and its idempotent completion is B. Objects in BBS are given by sequences of indices from the Coxeter
graph. In [EKh], M. Khovanov and I found a diagrammatic presentation for the category BBS in type A,
defined over Z. From here, the number of projects which can be tackled diagrammatically explodes.

• Higher Representation Theory of Hecke algebras and cellular algebras What is the general theory
of categories upon which B acts? As we have seen, many useful such categories exist, and this information
would tell us what extra structure is induced by the “correct” morphisms of B. In [CR] Chuang and Rouquier
give the answer for categorical sl2 representations (generalized by Rouquier to the Kac-Moody case [Ro2]):
while sl2 representations are semisimple and split into isotypic components, their categorical analogs have
filtrations by isotypic categories, along the lines of the cellular structure of finite quotients of quantum sl2.
This seems to be a very general idea, that the categorified representation theory of cellular algebras should
be in some sense “cellular.” The same should be true for the Hecke algebra. Some of the building blocks
of this cellularity, the induced representations, have already been categorified diagrammatically (see below).
These are ideas that I am currently pondering with G. Williamson.

On a “nice” cellular algebra likeH, the space of possible trace maps T is a free module with one component
for each cell. In this case, cellular quotients can be cut out by the vanishing of certain traces. Similarly,
categorifications of cellular quotients via quotients of B should induce the corresponding trace map via
the dimension of Hom spaces. This is true for the categorification of the Temperley-Lieb algebra, given
diagrammatically in [El2]. Moreover, the Hom spaces appearing there are somewhat natural, associated to
the coordinate ring of the 1-skeleton of the Coxeter complex. It is an ill-formed question, but I would like
to explore the general notion of cellular categorifications and their Hom spaces, and see what comes out. A
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more precise and possibly far-fetched question is whether there is a category T which categorifies the trace
space T , and a categorification of H with morphisms enriched in T which induces the universal trace, and
whether categorified cellularity could be seen in this light.

• Standard Modules In a somewhat related note, Soergel bimodules also have filtrations by R-bimodules
known as standard modules, as one expects from a cellular theory. These standard modules are connected
to the virtual braid group [Ka]. I would like to investigate whether they can be given diagrammatically, in
a similar fashion to Webster’s diagrammatic version of standard modules for tensor products of quantum
group representations [We].

• Other types I am currently writing up a diagrammatic presentation for BBS for any dihedral group. This
takes care of all possible interactions between two indices. For general reasons, one hopes that diagrammatics
for the general case will unfold once interactions between triples of indices are understood (3-index relations).
One would also expect that the diagrammatics for any simply-laced type are already evident, but the proofs
are currently lacking. It would be especially important to understand affine type, because that would provide
a tool to studying some of the most important geometric categories.

• Idempotents To understand B we need to understand the idempotents in BBS which pick out each indecom-
posable in B. This is a very difficult question, probably too difficult: finding the coefficients which appear in
these idempotents would tell one about other characteristics, and finding the idempotents themselves would
answer the Soergel conjecture. However, partial results are fruitful. In [El1] I found the idempotents for the
longest element of a parabolic subgroup, and I believe I know all the idempotents for the dihedral group.
These results motivate the following conjecture (generalizing an idea of Libedinsky [Li]), which I believe is
reasonably provable:

Conjecture 1. For each element w ∈ Sn, and for each reduced expression x of w, there is a natural idempo-
tent inside End(Bx), the corresponding Bott-Samelson bimodule (more will be said about these idempotents
below). These idempotents pick out a single Soergel bimodule MSw. While MSw is not necessarily indecom-
posable, the collection of all MSw descends to a basis of H which can be characterized by certain properties
on H in similar fashion to the Kazhdan-Lusztig basis. This basis is characteristic-independent, and hopefully
interesting.

• Hecke representations Using the idempotents above from [El1], we gave a diagrammatic categorification
of representations of H induced from trivial representations of subalgebras. This is a reasonable start
to categorifying one approach to the representation theory of H: categorifying induced trivial and sign
representations, and the morphism spaces between them, one should be able to categorify all irreducibles.
Work on this is underway. This should presumably accord with the categorifications already appearing in
geometry and in variants on category O (see [MaSt]), and could help give diagrammatics for those categories.

• Hecke representations II There is another interesting approach to the representation theory of H, as
found in Okounkov-Vershik [OV]. I am excited about the possibility of categorifying Jucys-Murphy elements
of H and trying to mimic their approach on the categorical level.

• Drinfeld Center It should be possible to give an explicit presentation of the Drinfeld center of B. Outside
of type A, this center is strictly bigger than what one might expect (i.e. one object for each conjugacy class).
While interesting in its own right, there may be extremely important connections to representation theory
and character sheaves, as seen in Bezrukavnikov-Finkelberg-Ostrik [BFO] in finite type.

• Higher Coxeter Theory Manin and Schechtman [MaSc] gave a detailed study of an n-category S associated
with the symmetric group Sn. In a generalization of the Bruhat order, they put the structure of a partially
oriented graph on: the elements of the symmetric group, reduced expressions of each element, transformation
paths of reduced expressions, transformation paths of those transformations, etcetera. The idempotents
found in [El1] and in Conjecture 1 come from following paths in one of these graphs. What is astonishing is
that the category BBS seems to be governed precisely by a truncation of this n-category. The objects in B
come from 1-morphisms in S, the generators from 2-morphisms, and the 3-index relations from 3-morphisms.
There are many potential consequences of this observation.

As the Grothendieck group of a derived category, B is really part of an (∞, 1)-category which controls
the Hecke algebra. One might ask whether B can itself be explicitly categorified by a 3-category, and that
categorified by a 4-category, and so on, providing nice finite models of this (∞, 1)-category. The first step
would be to replace the 3-index relations with 3-isomorphisms: the category S should tell you precisely what
the relations are between those new 3-morphisms, and they should be determined by interactions of 4 indices.
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While the 1- and 2-index relations were complicated, one expects all higher-index maps to be isomorphisms,
and thus the structure comes directly from S. So we have:

Conjecture 2. The 2-category BBS can be improved to a 3-category, and so on up to an n-category. At the
k-th step, the new morphisms are the k-morphisms in S, and the relations come from the k + 1-morphisms.
This can be described explicitly, maybe with higher-dimensional diagrams.

Studying higher Coxeter theory in other types could give the missing 3-index relations for the general
case, and might lead to similar results. Also, I would like to see what implications higher Coxeter theory via
Soergel bimodules has for the study of flag varieties themselves.

• Singular Soergel Bimodules The entire story described above is actually part of a slightly richer story.
The Hecke algebroid is an “idempotented” version of the Hecke algebra, and it is categorified by the 2-
category of Singular Soergel bimodules, as shown by Williamson [Wi]. This 2-category acts on 2-categories
associated to both geometry and category O, so that it encodes even more interesting data analogously to
B. We are currently in the process of giving a diagrammatic presentation for this 2-category in type A, after
which many of the above projects apply equally to this richer structure. In addition, this 2-category is more
“local” than B, meaning that the generators and relations are simpler and more generic, and thus perhaps
more intuitive.

• HOMFLY-PT Knot Homology The Hecke algebra plays a pivotal role in knot homology theories. The
surjection from the braid group Br to H lifts to a map from Br to isomorphism classes in the homotopy
category of B. Rouquier [Ro1] showed that this map is “strict” in the sense that braid words are sent to
complexes, and braid relations to chain maps. Using diagrammatics, D. Krasner and I [EKr] gave these
chain maps explicitly, and checked that they satisfied the “movie moves”. Now the map Br → H is truly
categorified by a functor from the category of braid cobordisms to the homotopy category of B.

Since Khovanov [Kh2] proved that the Hochschild homology of Rouquier’s complexes gives a categori-
fication of the HOMFLY-PT polynomial, we see that this knot homology theory is functorial over braid
cobordisms. Having an explicit description of these complexes and chain maps should make many calcula-
tions in knot theory much simpler. Pedro Vaz and I have found diagrammatics for the Hochschild homology
of Soergel bimodules, and are working on a purely diagrammatic version of Rasmussen’s spectral sequence
[Ra], using the functor from Soergel bimodules to foams found by Vaz and Mackaay [Va, MV]. We hope these
diagrammatics help knot theorists to calculate and understand HOMFLY-PT homology and its functoriality.

2.2. Quantum Group Categorification. Quantum groups are another class of algebras that have been
successfully presented using planar diagrammatics, thanks to Khovanov and Lauda. Irreducible representa-
tions were categorified by Lauda and Vazirani in [LV], and tensor products thereof by Webster [We]. The
field has become a hotbed of activity, to which I have not yet contributed but of which I have kept abreast.
I plan on working on the following projects:

• Schur-Weyl duality Mackaay, Stosic and Vaz [MSV] have given a categorification of the Schur algebroid,
a quotient of the quantum group, by using a quotient of Khovanov and Lauda’s category. They also give
a functor from Soergel bimodules to this quotient. Since the Hecke algebroid and the Schur algebroid are
canonically isomorphic thanks to Schur-Weyl duality, we expect to be able to give an equivalence of categories
from Singular Soergel bimodules to the Schur quotient category. This is joint with Williamson and Mackaay.

• Tensor product crystals It would be nice to prove the conjecture of Webster in [We], that his categorifi-
cation of tensor products gives the correct crystal structure under induction-cosocle functors. It seems like
the recent work of Kang and Park [KP] should generalize to a proof in this context. This is joint with E.
Park. I would also like to examine induction-cosocle functors in the context of B.

2.3. Other Topics. There are vast swaths of geometric representation theory which I have not studied, and
where diagrammatic methods or a careful study of natural transformations could potentially be very useful.
The same can be said about the theory of category O. I plan on expanding my horizons, and seeing what
connections can be made.
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