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1. INTRODUCTION

Categorification is the art of taking a well-beloved algebraic theory and adding an extra layer of categor-
ical structure. For example, the homology groups H,.(M) of a manifold M form a categorification of the
Euler characteristic of M. As this example illustrates, categorifications may provide more insight and under-
standing into the original algebraic story, but this is not their primary use; they are intrinsically interesting
theories in their own right.

My primary focus as a mathematician is categorical representation theory. Traditional representation
theory is concerned with representations of algebraic groups and their quantum groups, or of Hecke algebras
and braid groups, etcetera. One by one, these algebras and their representations have been realized as the
Grothendieck groups of certain additive or abelian categories, their categorifications. Two goals of categorical
representation theory that I find most interesting are:

e Finding the categorical analogs of the deep structural results in traditional representation theory:
(generic) semisimplicity, tensor products and braiding, induction and restriction functors, double-
commutant actions, etc;

e Studying these categories in their own right, on a morphism-theoretic level. The composition
maps between morphism spaces are the data in the categorification which is most invisible in its
Grothendieck group.

One of the key paradigms in this field is that a morphism-theoretic understanding is needed to successfully
approach any structural results; this is keenly illustrated by the seminal work of Chuang and Rouquier on
5y categorification [4].

In this research statement I will describe a number of broad dreams, motivating goals, and specific projects

I plan to pursue. They are focused mainly in the following general areas:

e Categorical Hecke theory, which studies categorifications of Hecke algebras, their representations,
and related algebras. Particular subtopics include Hodge-theoretic properties, the calculation of
certain idempotents, categorifying Hecke algebras with unequal parameters, and the existence of
higher Bruhat orders.

e Geometric Satake, which gives an equivalence between perverse sheaves on an affine Grassmannian
and representations of a Lie algebra. I have recently found an algebraic reformulation and proof of this
equivalence, as well as a quantum version, both in type A. The applications to both representation
theory and geometry have yet to be exploited.

e Categorification at roots of unity, a phenomenon made possible by the Hopfological algebra of Kho-
vanov and Qi. This is a generalization of homological algebra, some of whose fundamental properties
I plan to explore.

e Categorical braid group actions, which arise naturally in a host of geometric and algebraic cir-
cumstances. In the literature these categorical actions are “weak:” one demonstrates isomorphisms
corresponding to the braid relations, but fails to check compatibility between these isomorphisms. T
hope to “strictify” many of these actions.

Before describing these projects, I will provide a section giving some background and philosophy. The
goal is to describe the motifs of algebraicization, combinatorial replacement, and idempotent hunting, and
to reach one of the key mysteries in the field: what makes geometry special?

2. BACKGROUND

Given an abelian category A, such as one of our favorite categorifications, how does one get a handle on
it? One key tool could be called algebraicization, finding an algebra A which governs the behavior of the
1
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category. To accomplish this, one could find a set P = {P;} of projective objects which collectively generate
the category, and set A = End(®F;)°P. The full subcategory Ap (consisting of direct sums of objects in IP)
contains enough data to recover A itself. Now, A is an algebroid (i.e. it is equipped with special idempotents
1; € End(F;)), whose principal modules Al; form an additive category A-Prin equivalent to Ap. The
Koszul-dual approach (which works in less generality) would be to find a collection of generating semisimple
objects L = {L;}, and compute the (graded) algebroid A = Ext*(&L;).

In order for this algebraic reformulation to be useful, the algebroid A should be accessible to algebraic
tools. If one could present A by generators and relations, then one has an explicit description of A-Prin and
therefore of Ap. In practice, this requires a clever choice of projective generators. Consider the example of
the Hecke algebra H of a Weyl group, which has two traditional categorifications: perverse sheaves P on the
corresponding flag variety, or representations of the corresponding Lie algebra within the BGG category O
[30, 31]. A naive approach might choose P to be the set of indecomposable projective objects in O, or on
the Koszul-dual side, might choose IL to be the simple objects in P. However, indecomposable projectives in
P and simple perverse sheaves in P are notoriously difficult to pin down, and the corresponding algebra A
is generally unknown. A more clever approach due to Soergel [59, 60] suggests that one let P be the set of
Bott-Samelson projectives in O, or Bott-Samelson sheaves in P, which are certain combinatorially-defined
objects. Several of my papers [13, 12, 19] (joint in parts with Geordie Williamson or Mikhail Khovanov)
comprise an explicit and combinatorial presentation of the morphism algebra between Bott-Samelson objects.
This presentation is combinatorial in the sense that morphisms are depicted as planar graphs, with relations
coming from graphical manipulations.

When one has a set P whose endomorphism algebroid A is combinatorially presentable, one can call A-Prin
a combinatorial replacement for A. Many of the key algebras appearing in categorical representation
theory, such as the quiver Hecke algebras of Khovanov-Lauda and Rouquier [34, 36, 55], or the Webster
algebras of [65], also come from combinatorial replacements of categories of perverse sheaves. In fact, these
successes motivate a general paradigm for finding combinatorial replacements in geometry: one should find
combinatorially-defined resolutions of singularities (of orbit closures).

By studying these combinatorial replacement algebras, a number of generalizations have been constructed,
yielding categorifications which have no explicit representation-theoretic or geometric source! Examples
are Bott-Samelson bimodules for non-crystallographic Coxeter groups [60], or the odd categorifications of
quantum groups studied by Ellis, Khovanov, and Lauda [21, 22]. For other categorifications there are
geometric sources but insufficient geometric tools, such as Lauda’s categorification of the quantum group
[41] (dealing with non-proper geometry), or perverse sheaves in finite characteristic [27] (where key tools
like the Decomposition Theorem fail to work). One also has the recent categorifications of quantum groups
at roots of unity [37, 15], using geometrically-motivated algebras but equipped with differentials whose
geometric underpinning is not yet understood.

One of the most fascinating aspects of this field is that geometry is not that special: some non-
geometric categorifications appear to have the desirable properties one usually proves using geometric meth-
ods! One of the recent advances in this direction is a proof of the Soergel conjecture due to myself and
Geordie Williamson [20]. Let us work over R, and consider the category of Soergel bimodules, which are
summands of Bott-Samelson bimodules. The classes of indecomposable Soergel bimodules give a basis of
the Hecke algebra; the Soergel conjecture states that this is the Kazhdan-Lusztig basis. This was proven in
Weyl group type by Soergel, being an easy consequence of the decomposition theorem in geometry [58]. In
2000 de Cataldo and Migliorini [6, 7] provided a new proof of the Decomposition Theorem using elementary
Hodge theory, inductively proving that certain spaces have the Hodge-Riemann bilinear relations, and then
deducing the existence of idempotent splittings from this. We adapted this proof to show that, for an ar-
bitrary Coxeter group, indecomposable Soergel bimodules have the Hodge-Riemann bilinear relations, and
used this to deduce the Soergel conjecture. Along the way, we needed to produce combinatorial versions of
certain geometric constructions in this precise setting (like ample line bundles and hyperplane sections).

Why these non-geometric categorifications should have such reasonable behavior is a tantalizing mystery.
Is there some algebraic principle which explains the good behavior of both the geometric and non-geometric
categorifications (e.g. Hodge-Riemann bilinear relations)? Is there some unknown geometric theory behind
these examples?

Finally, we should note that finding a combinatorial replacement of an abelian category A is not the
end of the story. One hopes to understand A-Proj, the full subcategory of projective objects, which is the
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idempotent closure of Ap. In order to make A-Proj explicit, one must compute all the indecomposable
idempotents in A-Prin. This is no easy task. For Bott-Samelson bimodules over R, the Hodge-theoretic
results mentioned above give a general proof of the existence of idempotents with certain properties, and
provide an inductive algorithm. However, no general combinatorial description or recursive formula for these
idempotents is known.

3. CATEGORICAL HECKE THEORY

Let W be a Coxeter group, and let h be a “suitable” reflection representation over a field k. The following
definitions are due to Soergel (see [59, 60]).

Definition 3.1. Let R denote the coordinate ring of h), graded so that deg h = 2. For any simple reflection
s, let R® denote the subring of s-invariants. Let By denote the R-bimodule R ®gs R(1). Tensor products
of various bimodules B are known as Bott-Samelson bimodules, and form a monoidal category BSBim, a
full subcategory of R-bimodules. The idempotent closure of BSBim is known as the category of Soergel
bimodules SBim. Taking the left R-modules obtained from Soergel bimodules by killing the image of R
(the positive degree part of R) on the right, one obtains a non-monoidal graded category SBim.

The key results of Soergel are summarized in the following theorem.

Theorem 3.2. The Grothendieck ring [SBim| is isomorphic to the Hecke algebra H of W. The action
of SBim on SBim categorifies the regular representation of H. When W is a Weyl group and b the usual
reflection representation, SBim is equivalent (in a graded sense) to the category of semisimple perverse
sheaves on the flag variety, and after forgetting the grading, it is equivalent to the category of projective
objects in O.

Moreover, in the Weyl group case, one can study non-semisimple perverse sheaves or non-projective objects
in O using complexes of Soergel bimodules. There are also geometric interpretations of SBim for crystallo-
graphic Coxeter groups, but for non-crystallographic Coxeter groups SBim is the only known categorification
of H.

Theorem 3.3. (joint with Geordie Williamson [19]) There is an explicit diagrammatic presentation for
BSBim, by generators and relations. In this presentation, morphisms are represented by planar graphs
called Soergel diagrams. This diagrammatic presentation exists for more general representations b over
more general rings k (e.g. we allow k = Z for crystallographic groups), and the Grothendieck ring is still
tsomorphic to H.

In special cases this presentation had appeared previously: in type A by myself and Khovanov [13],
in dihedral type in my PhD thesis [12], and independently in right-angled type by Libedinsky [43]. Our
presentation is a powerful new tool, and Williamson and I are in the midst of a fruitful collaboration in this
field.

Dream 1. Fully understand categorical Hecke theory and Soergel bimodules in an algebraic framework,
using the presentation of Theorem 3.3.

3.1. Idempotents, Hodge theory, and p-canonical bases. To pass from an understanding of the com-
binatorial replacement BSBim to an understanding of its idempotent closure SBim, one must compute the
idempotents which project to each indecomposable object.

Goal 1. There is one indecomposable Soergel bimodule B,, for each w € W, and it is a summand of
the Bott-Samelson bimodule BS(w) attached to any reduced expression w of w. Find the idempotent in
End(BS(w)) which projects to By,.

This goal seems extremely difficult, though at least the presentation of Theorem 3.3 allows for an explicit
approach. Special cases are more accessible, and do hold interest. I have computed these idempotents
directly for dihedral groups [12], and longest elements in type A [9], and both cases have produced interesting
connections with other areas of representation theory. Recently, Libedinsky and I [14] have computed these
idempotents for universal Coxeter groups.

Project 1. Extend these results in a number of ways: to longest elements in other Weyl groups (see Manin-
Schechtmann theory below), to certain elements of affine Weyl groups (see Satake equivalence below), and
using pattern-avoidance methods to other special elements.
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There is also an algorithm for computing these idempotents (discussed in [20], though known before to
experts, e.g. [42]), which amounts to the computation of certain so-called intersection forms valued in k.

Proposition 3.4. If the determinants of these intersection forms are all invertible, then the indecomposable
Soergel bimodules descend in the Grothendieck group to the Kazhdan-Lusztig basis of H. This implies the
positivity of structure coefficients in H and of Kazhdan-Lusztig polynomials.

Goal 2. Find a combinatorial understanding of these intersection forms, and compute their determinants.
Find a combinatorial description of which primes divide a given determinant.

When k is a field of finite characteristic p, these intersection forms will sometimes be degenerate, and the
image of the indecomposable Soergel bimodules in the Grothendieck group is known as the p-canonical or p-
orthodox basis of H [68]. These bases play a significant role in modular representation theory [28], and can
also provide information (but not solve) the geometric question of when the characteristic cycle is reducible
[63]. Computing these bases is now possible with our tools: such a computation recently allowed Williamson
to find counterexamples to the James conjecture and the so-called Lusztig conjecture [67]. Further general
progress will depend on a more combinatorial approach.

Project 2. Find a combinatorial basis of morphism spaces in BSBim which is adapted to the computation
of intersection forms.

This is expected to be one of the most difficult and far-reaching of the projects proposed here. Note that
BSBim already has a combinatorial cellular basis, the light leaves basis of Libedinsky [42, 19], though it does
not seem well-adapted to the problem.

As mentioned previously, Williamson and I have recently proven [20] that Soergel bimodules satisfy the
Hodge-Riemann bilinear relations, when k = R. One implication is that intersection forms above are all non-
degenerate. In this proof, we essentially adapted the arguments of de Cataldo and Migliorini for semismall
maps in [6]. There are a number of other positivity conjectures which do not follow directly from our results,
but require further investigation. We already have strategies in mind towards approaching these projects.

Project 3. There is a more general Hodge-theoretic result for non-semismall maps, the relative Hodge-
Riemann bilinear relations proved in [7]. Show that all Bott-Samelson bimodules possess the relative
Hodge-Riemann bilinear relations, as do all tensor products of Soergel bimodules. This would imply the
unimodularity of structure coefficients in H.

Project 4. Apply Hodge-theoretic techniques to the study of standard filtrations in Soergel bimodules.
These standard filtrations correspond, via Soergel’s functor and work of Kubel [39], to the Janzten filtration
on O. A Hodge-theoretic result would allow us to prove the Jantzen conjecture.

When k = C and the reflection representation h does not have a real form, it is possible that the intersection
forms are degenerate [11]. The reflection representations b, defined in the chapter below on Satake are an
example. These particular reflection representations do not appear to have been studied previously in any
depth. I have no concrete projects to propose at the moment, however.

3.2. Higher representation theory of H. The algebra H with its canonical basis has an interesting cell
theory, and in type A is actually a cellular algebra. This has significant connotations for its representation
theory, and one hopes to lift these to the categorical level. The general “cell theory” of categorifications is
investigated by Mazurchuck and Miemietz in a series of papers [52, 49, 50, 51]. They show among other
things that minimal categorifications of cell modules exist and are canonically defined.

Project 5. Describe the minimal categorifications of cell modules explicitly, analogously to the way they
have been described in categorical Lie theory (using cyclotomic quotients).

One step in this direction has been my categorification of induced trivial representations from parabolic
sub-Hecke algebras in type A [9]. Note that, in type A, irreducible representations can be understood by
intersecting induced sign and induced trivial representations. Moreover, the Jucys-Murphy elements play
a key role in branching rules, allowing one to study the representations of all type A Hecke algebras as a
connected family. Symmetric polynomials in Jucys-Murphy elements span the center of H.

Goal 3. Categorify representation theory in type A.
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Project 6. Generalize the result of [9] to sign representations, and categorify the intersection procedure,
producing cell module categorifications.

Project 7. Study categorified branching rules, and categorify the Okounkov-Vershik approach to the sym-
metric group [53].

Project 8. Find complexes of Soergel bimodules which categorify Jucys-Murphy elements and their sym-
metric polynomials (or similar elements).

Of these projects the last is likely the most difficult, as working with complexes of Soergel bimodules is
computationally intensive. However, it may turn out to be the most significant, if it provides insight into
the categorical center of SBim.

Definition 3.5. The categorical center of SBim is the braided monoidal category of complexes F'® possessing
natural isomorphisms F* ® B =2 B ® F* for any B € SBim.

It is known that this categorical center is equivalent to Lusztig’s category of character sheaves [45]. There
are not many tools available to study character sheaves, so the ability to explicitly describe them as complexes
and study them in a straightforward way would be very exciting.

Dream 2. Find a combinatorial description of the categorical center of SBim. More specifically, describe a
combinatorial generator and its dg algebra of endomorphisms. Find idempotents projecting to indecompos-
able objects.

3.3. Folding, unequal parameters, and other embeddings. Let G be a cyclic group acting on the
Coxeter graph of W, whose orbits consist of commuting reflections. The invariant subgroup W is another
Coxeter group, generated by the product of the simple reflections in each orbit.

Theorem 3.6. ([17]) The category of G-equivariant Soergel bimodules for W will categorify (in a certain
twisted sense) the Hecke algebra of WE with unequal parameters.

This process is called folding, and was conventionally understood using geometry (the cyclic group being
generated by a non-conventional Frobenius map; see [44] for more details). However, we have a new algebraic
proof of folding, which applies in the non-geometric setting as well, and is far easier to study. Using this
twisted Grothendieck group we have also provided a categorification of the Lusztig-Vogan representation
[18], giving a proof of the Lusztig-Vogan conjecture [46] on signed positivity. We expect analogous results
for quiver Hecke algebras and quantum groups as well.

Project 9. Compute the twisted Grothendieck groups of equivariant Soergel bimodules in more generality
(say, for non-cyclic groups). These will not be Hecke algebras with unequal parameters, but some new,
unexplored algebras. Study the representation theory and cell theory of these algebras.

Project 10. Adapt the cellular categorification theory of Mazorchuk and Miemietz [52, 49, 50, 51] to study
equivariant categories.

Goal 4. Many Hecke algebras with unequal parameters do not arise from folding. Find a framework in
which these algebras can be categorified.

There are other embeddings of Coxeter groups similar to folding, in that a simple reflection is sent to the
product of commuting simple reflections, except that these commuting reflections do not form the orbit of
any group action. For example, Hs embeds into Dg, and H4 embeds into Es. The relationship between their
Hecke algebras with unequal parameters is not well understood.

Goal 5. Find a framework in which the Hecke algebra of H; can be categorified using some structure on
the Soergel bimodules of Eg, and similarly for other such embeddings.

Dream 3. Use this to produce a geometric framework which categorifies Hecke algebras of non-crystallographic
Coxeter groups. Explain the mystery of why non-crystallographic Soergel bimodules possess seemingly geo-
metric properties.

There are a number of other embeddings of Coxeter groups (such as the excellent subgroups of Lusztig,
appearing in the generalized Springer correspondence) which have not yet been studied categorically, but
can be plausibly approached using variants on the Hecke category.
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3.4. Manin-Schechtmann theory. Manin and Schechtmann define a notion of higher Bruhat orders [48],
attached to the family of type A Coxeter groups. One of these higher Bruhat orders allows one to place a
(partial) orientation on the graph of reduced expressions of a given element in S,,. The significance of this
orientation suddenly comes to the fore when one examines BSBim. To any path in the reduced expression
graph one can associate a morphism between Bott-Samelson bimodules.

Theorem 3.7. ([9]) For the Manin-Schechtmann orientation, any two oriented paths with the same start
and finish yield equal morphisms in BSBim. When w = wg € S, is the longest element, the oriented path
from source to sink can be used to construct the idempotent projecting to B, .

Computations with Soergel bimodules have indicated that this behavior in BSBim extends to type B, but
does not extend to type Hs.

Conjecture 1. There is also a Manin-Schechtmann theory of higher Bruhat orders in type B, and possibly
to type D. In fact, there may be a type-independent, geometric description of higher Bruhat orders for all
Weyl groups. This would yield a canonical orientation on all reduced expression graphs, up to automorphisms
of the Dynkin diagram.

Project 11. Define these higher Bruhat orders in types B and D. Check whether oriented paths yield
idempotents for longest elements.

Computation of the higher Bruhat order in type B was a project assigned to a high school student under
the auspices of MIT’s PRIMES-USA program. She managed to give a conjectural description of the type B
analog of a major tool in Manin-Schechtmann: the packet order. From this, a proof and general description
of higher Bruhat orders in type B should not be far off.

There is a definite geometric implication of the fact that certain paths yield equal morphisms in BSBim,
and others do not. Thus the geometric description of the higher Bruhat orders in Conjecture 1 is not
unreasonable.

3.5. Singular Soergel bimodules. If Soergel bimodules tell you about perverse sheaves on the flag variety
of a Weyl group (resp. category O), then singular Soergel bimodules SSBim tell you about perverse sheaves on
partial flag varieties (resp. parabolic or singular category O). A generalization of Soergel bimodules, SSBim
is a 2-category with one object for each finite parabolic subgroup W; C W, whose 1-morphisms consist
of (R"1, RW7)-bimodules; it can be defined for any Coxeter group. Once again, there is a combinatorial
subcategory SBSBim of singular Bott-Samelson bimodules, given by compositions of induction and restriction
bimodules. These were all studied by Williamson [69].

Goal 6. Present SBSBim by generators and relations in general type.

Project 12. Williamson and I have a conjectural presentation in type A. Prove that it works by connecting
this presentation with the recent work of Cautis-Kamnitzer-Morrison [3] (see the Satake section below).

A presentation is found for dihedral groups in my thesis [12]. There are a number of reasons that presenting
SBSBim should be significant, as it plays a key role in several projects mentioned elsewhere, such as the
higher representation theory of Hecke algebras above, and the Satake equivalence below. Also, the generating
morphisms in BSBim are actually compositions of more elementary morphisms in SBSBim, making certain
relations more comprehensible.

3.6. Knot theory. Rouquier complexes are complexes of Soergel bimodules which satisfy the categorified
braid relations [56]. Khovanov [33] showed that taking the Hochschild homology of Rouquier complexes in
type A will yield a triply graded link homology theory. By passing to quotients of the Hecke category, one
can understand sl,, link homology as well [62, 47]. Though knot theory is not one of my main interests, I
believe I can contribute something to the field.

Goal 7. As part of the proof of the Soergel conjecture in [20], Williamson and I showed that Rouquier
complexes for positive lifts in the braid group satisfy a version of the Hodge-Riemann bilinear relations.
Explore the implications of this for Khovanov’s triply graded homology.

Goal 8. Provide a diagrammatic description of the Hochschild homologies of Soergel bimodules, in terms
of Soergel diagrams on a cylinder.
6
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In preliminary calculations of Hochschild cohomology, Koszul complexes associated to special non-regular
sequences were a key tool [10]. The summands in any Koszul complex are indexed by vertices of a hypercube;
for a special kind of non-regular sequence, the cohomology splits into terms for each vertex as well.

Project 13. Develop the theory of these special Koszul complexes, so that they can be applied to Hochschild
homology computations in certain monoidal categories.

4. THE SATAKE EQUIVALENCE

Let G be a complex algebraic group with Langlands dual GV, and let O = C[[¢t]] and K = C((¢)). The
geometric Satake equivalence is an equivalence between two symmetric monoidal categories: on the
geometric side, the G(O)-equivariant perverse sheaves on G(K)/G(O), and on the representation theory
side, the category Repgv. See [24] for more details. Rephrasing this result in another language, one arrives
at a formulation independent of the choice of algebraic group for the Lie algebra g. This is explained in my
forthcoming work [11].

Theorem 4.1. ([11]) There is an equivalence between the 2-category of maximally singular Soergel bimod-
ules mSSBim for the affine Weyl group, and the 2-category of representations Repgv of gV with the extra
data of a central character in Q = m1(g¥). A simpler consequence is an equivalence between Repgv and a
certain Hom category in mSSBim.

One might think that the Satake equivalence has an easy side (representation theory) and a difficult side
(geometry), but this overstates the easiness of representation theory. The category Repgv is semisimple,
but its monoidal structure on morphisms is poorly understood. To algebraicize it, one should describe the
endomorphism algebra End(@®P;, ® ---® P;,) of direct sums of tensor products of irreducibles, with both its
usual and its monoidal product structures. This is a difficult open problem. In fact, I believe the geometric
side is better adapted to this computation.

In type A one can find combinatorial replacements for both 2-categories in this equivalence. The full sub-
2-category of mazimally singular Bott-Samelson bimodules mSBSBim inside mSSBim has a presentation
by generators and relations, arising from the conjectural presentation of SSBim discussed in the previous
chapter. The full sub-2-category Fundgv consisting of tensor products of fundamental representations also
has a presentation: for sly it is the famous Temperley-Lieb algebra [61, 29]; in rank 2 one has Kuperberg’s
web algebras [40]; for sl,, one has the sl,,-webs of Cautis-Kamnitzer-Morrison [3]. Using these presentations,
one can give a straightforward proof of the following theorem, which yields a new proof of geometric Satake.

Theorem 4.2. ([11]) In type A there is an explicit equivalence of additive 2-categories between mSBSBim
and Fundgv.

A surprising and unexplained fact is that this equivalence can be quantized! In type A, there is a
g-deformed affine Cartan matrix, apparently new to the literature, yielding a non-traditional reflection
representation b, of the affine Weyl group. When ¢ € C \ R, this representation has no real form. As
discussed in Theorem 3.3, one can still define Soergel bimodules SBim, for b,, and its auxiliary 2-categories.

Theorem 4.3. ([11]) There is an explicit equivalence between mSBSBim, and Fundgq(s[n), the tensor
products of fundamental representations for the quantum group Ug(sly).

Goal 9. Find a geometric explanation for the ¢-deformed affine Cartan matrix.

Note that Gaitsgory [23] also has a quantum geometric Satake equivalence, but the connection between
these two constructions is entirely unknown.

To recover information about Repgv from Fundgv one must compute the idempotents in Fund which
project to the irreducible representations in Rep. For sly one has the Jones-Wenzl projectors [26, 66], and
one has the so-called “clasps” in rank 2 [38], but in sl, for n > 4 these idempotents are still unknown.
However, Nicolas Libedinsky and I have done enough computations to convince ourselves this problem is
tractable.

Project 14. Compute the sl,, clasps. Via the Satake equivalence, this yields the idempotents projecting to

indecomposable Soergel bimodules for special elements of the affine Weyl group A,,_;.
7
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One other obvious project is to explore what can be generalized to other types. Maximally singular
Bott-Samelson bimodules should only correspond to tensor products of miniscule weights, though other
combinatorial replacements may potentially be found. Neither side of the equivalence has any known pre-
sentation, and I expect the problem to be extremely difficult. The source of a possible g-deformation is also
unknown.

Technically, the Satake equivalence sends Fund to the maps of degree 0 in mSBSBim. However, the pre-
sentation for mSBSBim makes it easy to understand morphisms of nonzero degree as well, which correspond
(also see [24]) to interesting operations between representations of g (and Uy(g¥)). One of the reasons I
believe that mSBSBim is easier than Fund is that the degree 0 maps are not elementary, being compositions
of various elementary generators of nonzero degree.

5. CATEGORIFICATION AT ROOTS OF UNITY

The word “categorification” was coined by Crane and Frenkel [5], who originally conjectured that one
could categorify quantum groups at roots of unity. The (integral form of a) quantum group at generic ¢ is a
Z[q,q ]-module, so it can be categorified by a graded additive category. This category was constructed by
Khovanov and Lauda [35]. However, categorification at a root of unity requires a different kind of category,
made possible by Khovanov’s 2005 foray [32] into hopfological algebra.

In [32], a philosophy is presented whereby ordinary homological algebra is just a theory one can associate
to the graded (super) Hopf algebra k[0]/0%. However, for any finite dimensional graded (normal or super)
Hopf algebra one has a corresponding theory, yielding for any ring a pair of triangulated categories which
are analogs of its homotopy and derived categories. For the partial (non-super) Hopf algebra k[9]/0P over
a field k of characteristic p, one obtains a theory where the Grothendieck group of the derived category is
naturally a module over Z[(,], for (, a primitive p-th root of unity. You Qi [54] has developed hopfological
algebra to a great extent, though the theory is still, relatively speaking, in its infancy.

Khovanov and Qi [37] categorified the positive half U;‘ of the quantum group at ¢ = (,, by taking quiver
Hecke algebras and endowing them with the structure of a p-dg-algebra. Qi and I [15] continued this story,
categorifying all of Uy (slz) at ¢ = {, (both the Lusztig and the small form), and developing some additional
techniques to deal with p-dg-algebras.

Goal 10. Categorify U,(g) at roots of unity for arbitrary g.

Dream 4. Study the structural properties of categorical p-g-actions. One may be able to produce results
similar to those of Chuang-Rouquier [4] and Rouquier [55], but categorifying the properties of modular
representation theory.

The techniques we developed for sls relied on explicit idempotent decompositions, which are not known
outside of sl;. They also rely on the fact that indecomposable objects descend to a canonical basis. We
believe that the reliance on explicit idempotent decompositions can be bypassed with additional technology,
which would allow one to address the simply-laced case (thanks to results of Webster [64]).

Project 15. Category U,(g) at roots of unity for simply-laced g.

The reliance of our proof on categorification of a canonical basis is more complicated, but I believe that
additional structure governing decompositions into irreducibles, such as the technology of intersection forms
and Lefschetz operators from [20], will also allow us to bypass most of the difficulty. This technology has
not yet been developed for quantum group categorifications, but for Hecke categorifications it is in place.
We have already computed the relevant p-dg-algebra structure on BSBim.

Project 16. Categorify H at a root of unity, by endowing Soergel diagrams with a p-dg-algebra structure.

On another note, one of the major features that homological algebra possesses and hopfological algebra
lacks is t-structures. Instead, hopfological algebra tends to have collections of homological functors which
collectively exhaust the category.

Dream 5. Find a general theory of homological functors in hopfological algebra, and analogs of spectral
sequences which compare them.
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6. CATEGORICAL BRAID GROUP ACTIONS

A weak action of a group G on a category C is a homomorphism G — [Aut(C)] to the group of isomorphism
classes of autofunctors of C. One has a functor Fy for each g € G, with Fy o F}, = F;,. A strict action, on
the other hand, is a 2-functor from ¢, the 2-groupoid of G, to the 2-category Aut(C) itself. That is, one
needs to provide an explicit isomorphism Fj o F}, — Fyj, satisfying some natural compatibility requirements.
There are many important geometric examples of weak actions of braid groups Bryy and affine braid groups
Brif on categories of sheaves (such as [1]), and I would like to know if they can be made strict.

One issue is that these weak actions are not usually defined by giving a functor Fj for each braid g.
Instead, one provides functors for the generators (simple reflections in a braid group, and the translations
in Braﬁ)7 and checks that the functors corresponding to either side of the braid relation are isomorphic.
Williamson and I have a result [16] which greatly simplifies what additional data one needs to provide in
order to upgrade such a weak action of Br into a strict action (vastly strengthening a similar result of Deligne

[8]).
Project 17. Simplify the strictification data for Br®¥ in its lattice presentation.

Project 18. Use these results to prove the strictness of many geometric braid actions.

Our result in [16] was based on the topology of certain cell complexes relaxed to Coxeter complexes and
Salvetti complexes [57]. More precisely, we give a diagrammatic interpretation of 7o of this complex. The
K (m,1) conjecture states that these complexes are classifying spaces, so that 7o should be trivial. This is
why we call the following project the K(m,1) conjecturette.

Project 19. Prove diagrammatically that m of the Salvetti complex is trivial.

One fact, proven by Rouquier [56] using entirely different techniques, is that the action of Rouquier
complexes on R-bimodules is strict. Joseph Grant and I have found a way to bootstrap this result into the
following theorem.

Theorem 6.1. (joint with Grant) All braid group actions by spherical twists are strict.

Project 20. Spherical twists yield braid group actions which factor, in the Grothendieck group, through a
very restrictive quotient of the Hecke algebra. Use similar bootstrapping techniques to strictify any braid
group action which factors, in the Grothendieck group, through the Hecke algebra.

Grant has also explored in detail the actions of positive lifts of longest elements of parabolic subgroups
in the spherical case [25], and this may also be generalized.

There are numerous braid group actions which do not factor through the Hecke algebra. For instance, the
braid group acts on tensor products of quantum group representations, and this can be lifted to a categorical
braid group action. The most accessible way to study these braid group actions in type A is using categorical
Howe duality [2], using the Rickard complexes of Chuang-Rouquier.

Project 21. Prove that all such categorical braid group actions are strict.
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