Dignession - Pythagonean tripler
$$(a,b,c)$$
 pasitive a tegers $c = \sqrt{b}$
with $a^2 tb^2 = c^2$

eg
$$(3,4,5)$$
 $(5,12,13)$
How to find then all?
Divide by $c^2 \cdots (\frac{a}{c})^2 + (\frac{b}{c})^2 = 1$, $x = \underbrace{a} \in \mathbb{R}$ $y = \underbrace{b} \in \mathbb{R}$
 $x^2 + y^2 = 1$
Equivalent poldem is to find rational parile $(Try) \in \mathbb{Q}^2$ on unit curve.
eg $(\frac{b}{5}, \frac{b}{5})$ $(\frac{5}{12}, \frac{b}{12})$
We know how to do this using the frick we saw last time
care from substricted $t = \tan \frac{\Theta}{2}$,

$$x = \frac{1-t^2}{1+t^2}, \quad y = \frac{2t}{1+t^2}$$

$$x = \frac{1-t^2}{1+t^2}, \quad y = \frac{2t}{1+t^2}$$

$$x^2+y^2 = 1, \quad x \neq -1$$
We have functions
$$x = \frac{1-t^2}{1+x}, \quad y = \frac{y}{1+x}$$
We have functions
$$x = \frac{1-t^2}{1+x}, \quad y = \frac{y}{1+x}$$

$$x^2+y^2 = 1, \quad x \neq -1$$

$$t = \frac{1-t^2}{1+t^2}, \quad y = \frac{1}{1+x}$$

$$\frac{y}{1+x} = \frac{1-t^2}{1+t^2}, \quad x \neq -1$$

Mai topic this week How to define classical functions properly.
In, exp trig hyperbolic function
We've tabled about these before.
$$y = \ln x \iff x = e^{y}$$
 investe function
 $a = (e^{\ln a})^{x} = e^{x \ln a}$
 $(a > 0, x \in |R|)$ (definition!)

First approach Start with
$$\ln x \cdots$$

 $\ln x = \int_{x}^{x} f \cdot dt - makes serve as f is continuocial of $\int_{x}^{y} FTC$
 $= \int_{x}^{y} (\ln x) = \frac{1}{x}$
 $f = \int_{x}^{y} \int_{x}^{y} (\ln x) = \frac{1}{x}$
 $f = \int_{x}^{y} \int_{x}^{y} \int_{x}^{y} (\ln x) \int_{x}^{y} \int_{x}^{y} (\ln x) = \frac{1}{x}$
 $f = \int_{x}^{y} \int_{x$$

frove some properties of hx/e^{x} from these definition. let y=ex, so ln y = xhaws of log : d/ (lny) = 1 $\ln(ab) = \ln a + \ln b$ $\ln(a^b) = b \ln a \checkmark$ J. dy = ، د ۲ $dy = y = e^{x}$ Proof . By the depution, we need to show $\int_{1}^{ab} \frac{1}{t} dt = \int_{1}^{a} \frac{1}{t} dt + \int_{1}^{b} \frac{1}{t} dt$ $\int_{1} E^{\alpha} = \int_{1} t^{\alpha} \int_{1} t^{\beta} dt + \int_{1}^{b} \int_{1}^{b} dt = \int_{1}^{\alpha} \int_{1}^{a} dt + \int_{1}^{a} \int_{1}^{b} dt = \int_{1}^{\alpha} \int_{1}^{b} dt + \int_{1}^{a} \int_{1}^{a} dt$ • $\ln(a^b) = \ln(e^{b\ln a})$ Let u = at= $b\ln a$ = $\int_q^q f dt + \int_a^{qb} f dt = \int_q^q f dt = LHS$

Lows of exponents

$$e^{atb} = e^{ab}$$

 $(e^{a})^{b} = e^{b}$
 $(e^{a})^{b} = e^{b}$
 $(e^{a})^{b} = e^{b} = e^{ab}$
 $(e^{a})^{b} = e^{b} = e^{ab}$
 $(e^{a})^{b} = e^{b} \ln[e^{a}] = e^{ab} = RHS$
 $(HS = (e^{a})^{b} = e^{b} \ln[e^{a}] = e^{ab} = RHS$
 $All good_{b} \dots \ln x = \int_{1}^{x} \frac{1}{t} dt$ very clean and hay
 $e^{x} \ln vers^{2} fmchan a bit indirect$. $e^{x} is easier Mar Inx$

How can me deprie e more durectly?

Second approach e to be the unque solution to the defferential construi Could fuy to depué f'(x) = f(x) with f(0) = 1This is good ... prove properties like $e^{x+y} = e^{x}e^{y}$ quite easily. Indeed, let $f(x) = \frac{e^{x+y}}{e^{y}}$ (y constant) $f'(x) = \frac{e^{x+y}}{e^{y}} = f(x) + f(0) = \frac{e^{y}}{e^{y}} = 1$ $\therefore f(x) = e^{x}$ Thile about i exty zer ey Two as a Oly does any solution recensive reape for coupuly a .. e^{1(fy} - e e to this diff. eq. exit??? pour sein JEXISTENCE!

This is a major theory which reads to be developed carefully at this port.
This is a major theory which reads to be developed carefully at this port.
(e) Geometric series
$$|+x + x^2 + x^3 + \cdots = \frac{1}{|-x|}$$
 providing $|x| < |$.
In general, a power series is
 $\int_{1}^{\infty} \int_{1}^{\infty} \int_{$

Note if
$$f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$$
 has $R > 0$
then $a_0 = f(0)$, $a_1 = f'(0)$, $a_2 = \frac{f''(0)}{2!}$, ..., $a_n = \frac{f(n)}{n!}$, ...,
for example, $f(x) = e^{x}$... if we could define it by a power series,
this would show all $a_n = \frac{1}{n!}$
 $e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots$
 $\int_{1}^{e} \frac{1}{t} dt = 1$
 $\int_{1}^{e} \frac{1}{t} dt = 1$
Note this power series has $R = \infty$ (it converges $f(x)$ and both $f(x)$
here it quies as ∞ -differentiable function with domain IR .
 $d_1(e^{x}) = e^{x}$, $e^{x} = a_0 = 1$... gives a function

solving the diff. eq. from approach two.