Digression - Pythagorean tripper \& (a, b, c) positive u lepers with $a^{2}+b^{2}=c^{2}$

eg $(3,4,5) \quad(5,12,13)$
How to fund them all?
Divide by $c^{2} \cdots\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}=1 \quad \psi \quad x-\frac{a}{c} \in \mathbb{Q} \quad y=\frac{b}{c} \in \mathbb{Q}$

$$
x^{2}+y^{2}=1
$$

Equaleit problem is to fund rational pain b $(x, y) \in \mathbb{Q}^{2}$ on unit curie. eg $\left(\frac{3}{5}, \frac{4}{5}\right) \quad\left(\frac{5}{13}, \frac{12}{13}\right)$

We know how to do this using the trickle we saw lat trine cane from substitution $t=\tan \frac{\theta}{2}$,

$$
\begin{aligned}
& x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}} \\
& \mathbb{I}, \\
& t=\frac{y}{1+x}
\end{aligned}
$$

We have functions

$$
\begin{aligned}
& \nVdash\left\{(x, y) \in\left|\|^{2}\right| x^{2}+y^{2}=1, x \neq-1\right\} \\
& t \longmapsto\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right) \\
& \frac{y}{1+x} \longleftrightarrow(x, y)
\end{aligned}
$$

There are mutual inverses ... so they are bijection.
Thus, 12 paravetuies rational posits on unit crate, heres, Pytugorean tuples.

$$
\text { (eg) } t-\frac{1}{2} \leadsto\left(\frac{3}{5}, \frac{4}{5}\right) \quad t=\frac{2}{3} \leadsto\left(\frac{5}{13}, \frac{12}{13}\right) \quad t=\frac{3}{4} \leadsto\left(\frac{7}{25}, \frac{24}{25}\right)
$$

Mai tonic this week How to depre classical function property.

\rightarrow We've talked about there before.

- $y=\ln x \Longleftrightarrow x=e^{y}$ invesie function
- laws of logs / exponents
- $a^{x}=\left(e^{\ln a)^{x}=e^{x \ln a} \text {. }{ }^{x} \text {) }{ }^{x}(a ; i)}\right.$ $(a>0, x \in \mathbb{R}) \quad$ (depiction!)

First approach Start with $\ln x \cdots$

$$
\left.\begin{array}{l}
\ln x-\int_{1}^{x} \frac{1}{t} \cdot d t \quad \text {-makes sere as } \frac{1}{t} \text { is continenoici } \\
\text { definition! }
\end{array}\right\} F T \subset
$$

As $\frac{1}{x}>0$ for $x>0, \ln x$ is increasing, hence, $1-1$, so nveribble. Then you deme e^{x} to be the inverse function.

Prove some properties of $\ln x / e^{x}$ form there derision.

$$
\frac{d}{d x}(\ln x)=\frac{1}{x}, \frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

$$
\left.\begin{array}{l}
\text { Laws of } \log \\
\cdot \ln (a b)=\ln a+\ln b^{k} \\
\cdot \ln \left(a^{b}\right)=b \ln a
\end{array}\right\}
$$

Proof. By the definition, we

Let $y=e^{x}$, so $\quad \ln y=x$

$$
\begin{aligned}
& \therefore \frac{d}{d x}(\ln y)=1 \\
& \therefore \quad \frac{1}{y} \cdot \frac{d y}{d x}= \\
& \therefore \quad \frac{d y}{d x}=y=e^{x}
\end{aligned}
$$ need to show

$$
\int_{1}^{a b} \frac{1}{t} d t=\int_{1}^{a} \frac{1}{t} d t+\int_{1}^{b} \frac{1}{t} d t
$$

Take RHS... $\int_{1}^{a} \frac{1}{t} d t+\int_{1}^{b} \frac{1}{t} d t=\int_{1}^{a} \frac{1}{t} d t+\int_{a}^{a b} \frac{a}{u} \frac{1}{a} d u$

$$
\begin{aligned}
\ln \left(a^{b}\right) & =\ln \left(e^{b \ln a}\right) \\
& =b \ln a
\end{aligned} \quad \begin{aligned}
& \text { Tet } u=a t \\
& a
\end{aligned} d t+\int_{a}^{a b} \frac{1}{t} d t=\int_{1}^{a b} \frac{1}{t} d t=L H S
$$

Lows of erponents

- $e^{a+b}=e^{a} e^{b}$
- $\left(e^{a}\right)^{b}=e^{a b}$

Proof $\cdot R H S=e^{a} e^{b}=e^{\ln \left(e^{a} e^{b}\right)}=e^{\ln \left(e^{a}\right)+\ln \left(e^{b}\right)}=e^{a+b}=\operatorname{LHS}$
${ }^{0} \operatorname{LHS}=\left(e^{a}\right)^{b}=e^{b \ln \left(e^{a}\right)}=e^{a b}=$ RHS
All good! ... $\ln x=\int_{1}^{x} \frac{1}{t} d t$ very clean and tidy
e^{x} invese funchai a bitinderect. $\longleftarrow e^{x}$ is eaxie than Inx

How can we depiè e^{x} more duectly?

Second approach
Could tuy to defie e^{x} to be the ungue solutian to the difreiextial equotui

$$
f^{\prime}(x)=f(x) \text { wh } f(0)=1
$$

Thin is/good … pove properter lise $e^{x+y}=e^{x} e^{y}$ qute eaily.
Indeed, lel $f(x)=\frac{e^{x+y}}{e^{y}} \quad$ (y constant)

Thilh obuat
this as a recursue reape
for couputign n

$$
\therefore \frac{e^{x+y}}{e^{y}}=e^{x}
$$ panc seim

$$
\begin{aligned}
& f^{\prime}(x)=\frac{e^{x+y}}{e^{y}}=f(x), f(0)=\frac{e^{y}}{e^{y}}=1 \\
& \therefore f(x)=e^{x}
\end{aligned}
$$

Wly does ary solution to this diff. eq. exiri??? ! existence!

Third approach Use paver senès.
This is a major theony which need to be develoloed coreprely at this port.
(e9) Ceometni seres $\left\lvert\,+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}\right.$ providing $|x|<1$.
In geresel, a paver seies is

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots=\sum_{n=0}^{\infty} a_{n} x^{n} \quad \text { for sequerce } \quad a_{0}, a_{1}, a_{2}, a_{3}, \ldots \text { of real no.s }
$$

meaus: $\lim _{N \rightarrow \infty} \sum_{n=0}^{N} a_{n} x^{n}$ May not converge.
The $x \in \mathbb{R}$ for wluch it does connerge
Theorem (ruer a power seves $f(x)$ as above, there's $R \in \mathbb{R} \geqslant 0 \cup\{\infty\}$
give the donain of the fuction $f(x)$ deffied by the poier seres . abrolutery called the radins of concegence of $f(x)$ so that $f(x)$ converges, for all x with $|x|<R$ and doesn 't convege for any x with $|x|>R$. On $(-R, R), f(x)$ is difierectitalie with $f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}$, whth seres aho converging on $(-R, R)$.

Note if $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ has $R>0$
then $a_{0}=f(0), a_{1}=f^{\prime}(0), a_{2}=\frac{f^{\prime \prime}(0)}{2!}, \ldots, a_{n}=\frac{f^{(n)}(0)}{n!}, \ldots$
for example, $f(x)=e^{x} \ldots$ if we could defies it by a power serest, this would show all $a_{n}=\frac{1}{n!}$

$$
e=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots
$$

Defurition $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$

$$
\int_{1}^{e} \frac{1}{t} \cdot d t=1
$$

Note this power series has $R=\infty$ (At converges $\forall x \cdots$ ratio test) here it guess an ∞-differentiable fucker with domain \mathbb{R}.
$\frac{d}{d x}\left(e^{x}\right)=e^{x}, e^{0}=a_{0}=1 \quad \cdots$ gives a ferctioi
solving the diff. eq. from approach two.

