formal definition of fing-function's
So far on approach to trig function war naive - from SOHCAHTOA

We had a theorem (lecture 3-3):-
Theorem If $f^{\prime \prime}(x)+f(x)=0$ then $f(x)=f(0) \cos x+f^{\prime}(0) \sin x$
\uparrow
This is rally a anqueress theoven. We didik ever worry about exutence of solutions - What are $\cos x$, si i x in frit place???
Expect: $\cos x$ is unqui solution to this diff eq. with $f(0)=1, f^{\prime}(0)=0$
Sui x
$f(0)=0, f^{\prime}(0)=1$

Now were going to start from scratch.

Def

$$
\left.\begin{array}{l}
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
\end{array}\right\}
$$

Both series have $R=\infty$,so domains of these fuctoin are all $q \mathbb{R}$.
Geneal theony of power series $\Rightarrow \frac{d}{d x}(\sin x)=\cos x, \frac{d}{d x}(\cos x)=-\sin x$
There fuctoin therefore do give solutions to $f^{\prime \prime}(x)+f(x)=0$ and they satisfy the expected initial conclutoin
Dignescron You can use Taylor's theorem to give a new proof of that unqueners theorem
Sketch Suppose $f^{\prime \prime}(x)+f(x)=0$. Then $f(x)$ is ∞-dispeertiable, so we can ceply Taylor's theorem to A. We deduce that
$f(x)=$ (nth degree Taylor poly) $+E_{n}(x)$ (Taylor renander)

$$
=f(0)\left[1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \cdots\right]+f^{\prime}(0)\left[x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots\right]+E_{n}(x)
$$

Step whee you hit x^{n}
where $\left|E_{n}(x)\right|=\left|\frac{f^{(n+1)}(t)}{(n+1)!} x^{n+1}\right|$ some t with $0<|t|<|x|$
As $f(x)$ is durfereutabie, it cts, so bonded on $[-|x|,|x|]$] as à $f^{\prime}(x)$. Peale N so $|f(t)|,\left|f^{\prime}(t)\right| \leqslant N$ for such t Then $\left|E_{n}(x)\right| \leqslant \frac{N}{(n+1)!}|x|^{n+1} \rightarrow 0$ as $n \rightarrow \infty$.
Show, that $f(x)=f(0) \cos x+f^{\prime}(c)$ si i x, shows the cuqueneris

We've defied $\cos x$, sin x by power series.
(1) $\left.\begin{array}{rl}\sin (x+y) & =\sin x \cos y+\cos x \sin y \\ \cos (x+y) & =\cos x \cos y-\sin x \sin y\end{array}\right\}$

This follows from the diff. eq. (HW 3)
Sketch for sir, let $f(x)=\sin (x+y)$ some courtant y

$$
\begin{gathered}
\text { So } f^{\prime \prime}(x)+f(x)=0 \\
\therefore f(x)=f(0) \cos x+f^{\prime}(0) \sin x=\sin y \cos x+\cos y \sin x
\end{gathered}
$$

(2) Note $\cos x$ is even, $\sin x$ is odd

$$
\begin{aligned}
& \cos (-x)=\cos x \quad \sin (-x)=-\sin x \\
& \cos (x-x)=\cos ^{2} x+\sin ^{2} x \\
& \therefore \quad \mid=\cos ^{2} x+\sin ^{2} x \Longrightarrow{ }^{\prime} \text { Pythagoras" } \\
&\therefore|\cos x| \leqslant 1, \quad \mid \sin x) \leqslant 1
\end{aligned}
$$

(3) Let's estimate cos 2 using degree 3 Taylor polynomial.

$$
\begin{aligned}
\cos 2 & =1-\frac{2^{2}}{2!}+E & |E| & =\frac{|\cos t|}{4!} 2^{4} \text { some } 0<t<2 \\
& \leqslant 1-2+\frac{2}{3}=-\frac{1}{3} & & \leqslant \frac{2^{4}}{4!}=\frac{16}{24}=\frac{2}{3}
\end{aligned}
$$

Shows $\cos 2<0, \cos 0>1$
As $\cos x$ is cts, Intermediate Value Theorem $\Rightarrow \exists$ some $x \in(0,2)$ with $\cos x=0$.

Def Let π be smallest positive real muser such that $\cos \left(\frac{\pi}{2}\right)=0$ (\ln fact $0<\pi<4$).
(4) As $\cos x>0$ for $0 \leqslant x<\frac{\pi}{2}$, and $\cos x=\sin ^{-1} x$, shows $\sin x$ is nu easing on $\left[0, \frac{\pi}{2}\right]$. As $\cos \frac{\pi}{2}=0, \sin \frac{\pi}{2}=1$

$$
\begin{array}{ll}
\cos \pi=\cos ^{2} \frac{\pi}{2}-\sin ^{2} \frac{\pi}{2}=-1 & \sin \pi=2 \sin \frac{\pi}{2} \cos \frac{\pi}{2}=0 \\
\cos 2 \pi=\cos ^{2} \pi-\sin ^{2} \pi=1 & \sin 2 \pi=2 \sin \pi \cos \pi=0 \\
\cos (x+2 \pi)=\cos x & \sin (x+2 \pi)=\sin x
\end{array}
$$

$\Rightarrow \cos x$, sin x are perodic, perod 2π

Noughly graphs we were expectig? I)
(5) $\sin x$ is increasing on $[0, \pi / 2]$, and odd, so increasing on $[-\pi / 2, \pi / 2]$. Increasing $\Rightarrow 1-1 \Rightarrow$ invertible.
Def arcsin to be the inverse function of \sin on $[-\pi / 2, \pi / 2]$.

$$
\frac{d}{d x}(\operatorname{arcsi} x)=\frac{1}{\sqrt{1-x^{2}}}
$$

(6)

$$
\begin{aligned}
\int \sqrt{1-x^{2}} d x & =\int \sqrt{1-\sin ^{2} \theta} \cos \theta d \theta \\
x=\sin \theta & =\int \cos ^{2} \theta d \theta=\frac{1}{2} \int(\cos 2 \theta+1) d \theta \\
d x-\cos \theta d \theta & =\frac{1}{4} \sin 2 \theta+\frac{\theta}{2}=\frac{\sin \theta \cos \theta}{2}+\frac{\theta}{2} \\
& =\frac{x \sqrt{1-x^{2}}}{2}+\frac{\operatorname{arcsi} x}{2}
\end{aligned}
$$

(7) Show the area of anit cerce is π

$$
\begin{aligned}
& =4 \int_{0}^{1} \sqrt{1-x^{2}} d x=\left[2 x \sqrt{1-x^{2}}+2 \operatorname{arcsix}\right]_{0}^{1} \\
& =2 \operatorname{arcsi} 1=\pi
\end{aligned}
$$

(8) Perve SOHCAHTOA

Ruglit augled As angle θ.
Angle Q neans sector is $\frac{Q}{2 \pi}$ or entire Q,
 so sector area $=\frac{Q}{2 \pi} \times \pi=\frac{Q}{2}$

$$
\frac{\theta}{2}
$$

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

$$
\frac{\theta}{2}=\frac{\pi}{4}-\frac{1}{2} \arcsin x
$$

$$
\begin{aligned}
& \theta=\frac{\pi}{2}-\operatorname{arcsi} x \\
& \therefore \arcsin x=\frac{\pi}{2}-\theta \\
& \therefore \quad x=\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta
\end{aligned}
$$

What we reeded for SOHCAITIOA!!

S	A

This completer rgorocis defuritai of tig functois.

