We had a theorem (Lecture 3-3)=-
Theorem If
$$f''(x) + f(x) = 0$$
 then $f(x) = f(0) \cos x + f'(0) \sin x$

Def
$$\cos x = l - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

Sci $x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$
General theory of power series \Longrightarrow $\frac{d}{dx} (i ci x) = \cos x$, $\frac{d}{dx} (o w x) = -wix$
There function therefore do give solutions to $f''(x) + f(x) = 0$ and they
satisfy the expected initial and their
Digression You can we Taylor's theorem to give a new proof of that
unqueries theorem
Sketch Suppose $f''(x) + f(x) = 0$. Then $f(x)$ is co-dyparentiable,
to we can apply Taylor's theorem to give the deduce that

$$f(x) = (n \text{ th degree Taylor } p \circ y) + E_n(x) (Taylor remainder)$$

$$= f(0) \left[1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots \right] + f'(0) \left[x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \right] + E_n(x)$$
where $|E_n(x)| = \left[\frac{f^{(n+1)}(t)}{(n+1)!} x^{n+1} \right]$ some t with $O < |t| < |x|$
As $f(x)$ is differentable, its cts, so bounded on $E - |x|, |x|$?
As $f(x)$ is differentable, its cts, so bounded on $E - |x|, |x|$?
As $f(x)$. Pick N so $|f(t)|, |f'(t)| \le N$ for ruch t
as is $f'(x) \cdot Pick$ N so $|f(t)|, |f'(t)| \le N$ for ruch t
Then $|E_n(x)| \le \frac{N}{(n+1)!} |x|^{n+1} \longrightarrow O$ as $n \to \infty$.
Shows that $f(x) = f(0) \cos x + f'(0) \sin x$, shows

the conquereis

$$\cos(x-x) = \cos^{2}x + \sin^{2}x \qquad \implies \text{'Pythagorou''}$$

$$= \cos^{2}x + \sin^{2}x \qquad \implies |\cos x| \le 1, \quad |\sin x| \le 1$$

3) Let's estimate
$$\cos 2$$
 using degree 3 Taylor polynomial.
 $\cos 2 = \left| -\frac{2^2}{2!} + E \right| E = \left| \frac{\cos t}{4!} \right|^2 + \text{ some } 0 < t < z$
 $\leq \left| -2 + \frac{2}{3} \right|^2 = -\frac{1}{3}$
 $\leq \frac{2^4}{4!} = \frac{16}{24} = \frac{2}{3}$
Shows $\cos 2 < 0$, $\cos 0 > 1$
As $\cos x$ is cts , Interveducte Value Theorem $\Rightarrow 7$ some $x \in (0/2)$
 $wh \cos x = 0$.
Def Let T be smallest positive real number such that $\cos(\frac{\pi}{2}) = 0$
 $(\ln \text{ fact } 0 < \pi < 4)$.
4) As $\cos x < 70$ for $0 \leq x < \frac{\pi}{2}$, and $\cos x = s \sin^3 x$,
Shows $\sin x$ is inversing on $Eo_1 \frac{\pi}{2}$? As $\cos \frac{\pi}{2} = 0$, $\sin \frac{\pi}{2} = 1$

5) sux is increasing on [0, TT/2], and odd, so increasing on $[-T_{2}, T_{2}]$. Increasing $\implies 1-1 \implies$ invertible. Dep arcsin to be the inverse function of sin on [-T/2, T/2]. d'encourse $\int \int \frac{1}{\sqrt{2r^2}} y = arcourse$ -, Cosy-dy-) i. dy = X [Joursuizy] duc + 6 $\int \sqrt{1-x^2} dx = \int \sqrt{1-x^2} dx d0$ $x = si 0 = \int \cos^2 0 \, d0 = \frac{1}{2} \int (\cos 20 + 1) \, d0$ $d = \int \cos 0 \, d0 = \frac{1}{4} \sin 20 + \frac{9}{2} = \frac{\sin 0 \cos 0}{2} + \frac{9}{2}$ $= \frac{2 \sqrt{\sqrt{1-x^2}} + a \cos 2}{2}$

(7) Show the area of unit cercle is TT $= 4 \int \int [-x^2] dx = \left[2x \int [-x^2] + 2ax \int x \right]_0^1$ = Zarcsúl = TT / Right argled is angle Q Prove SOHCAHTOA Angle Q means sector is Q of entire O, $\mathcal{L}(x,y)$ $y=\sqrt{1-x^2}$ so rector area = $\frac{Q}{2\pi} \times \pi = \frac{Q}{2}$ $\frac{Q}{2} = \frac{1}{2} \times \sqrt{1-x^2} + \int \sqrt{1-t^2} dt$ $= \frac{1}{2} \times \sqrt{1 + 1} + \left[\frac{1}{2} + \sqrt{1 + 2} + \frac{1}{2} + \frac{1}{2}$ $= \prod_{\psi} - \frac{1}{2} \operatorname{arcsuix}$ tan Q := SiQ

 $O = \frac{T}{2} - \arcsin x$ $\therefore \operatorname{ancsuize} = \frac{\pi}{2} - Q$ $\int (\underline{T} - 0) = \cos 0$ What we reeded for SottCATTOA!!

This completer ngorous

dépuisson of trig functions.