Introduction to Lie Theory

Homework \#2

1. Calculate:
(a) The differential $d m_{(e, e)}: \mathfrak{g} \oplus \mathfrak{g} \rightarrow \mathfrak{g}$ of the multiplication map $m: G \times G \rightarrow G$ for any algebraic group G.
(b) The differential $d i_{e}: \mathfrak{g} \rightarrow \mathfrak{g}$ of the group inversion map.
(c) The differential $d(\operatorname{det})_{e}: \mathfrak{g l}_{n}(\mathbb{k}) \rightarrow \mathbb{k}$ of the determinant morphism $\operatorname{det}: G L_{n}(\mathbb{k}) \rightarrow \mathbb{G}_{m}$.
2. Assume in this question that $p \neq 2$.
(a) In class, we identified the Lie algebra of the group $S p_{2 n}(\mathbb{k})$ with a subalgebra $\mathfrak{s p}_{2 n}(\mathbb{k})$ of $\mathfrak{g l}_{2 n}(\mathbb{k})$, and used this to deduce that $\operatorname{dim} S p_{2 n}(\mathbb{k})=2 n^{2}+n$. Do the same thing with the group $S O_{n}(\mathbb{k})$.
(b) Now let S be the affine variety of $n \times n$ symmetric matrices. Note that $G:=S L_{n}(\mathbb{k})$ acts on S via the map $G \times S \rightarrow S,(g, x) \mapsto g^{T} x g$ (a morphism of varieties). Use this plus the following general fact to calculate the dimension of $S O_{n}(\mathbb{k})$ in a different way: the dimension of an orbit of a connected algebraic group is equal to the dimension of the group minus the dimension of the identity component of the stabilizer of a point in the orbit.
3. Recall the notion of a representation of an algebraic group G from HW1, Q5. A right $\mathbb{k}[G]$-comodule is a vector space V together with a structure map $\eta: V \rightarrow V \otimes \mathbb{k}[G]$, that is, a linear map such that $(\mathrm{id} \otimes \Delta) \circ \eta=(\eta \otimes$ id) $\circ \eta$ and $(\mathrm{id} \bar{\otimes} \varepsilon) \circ \eta=\mathrm{id}$, where Δ and ε denote the comultiplication and counit on the coordinate algebra $\mathbb{k}[G]$, respectively.
(a) For a finite-dimensional right $\mathbb{k}[G]$-comodule V, show that there is a well-defined representation $\rho: G \rightarrow G L(V)$ such that

$$
\rho(g)(v)=\sum_{i=1}^{n} f_{i}(g) v_{i}
$$

for $g \in G$ and $v \in V$ with $\eta(v)=\sum_{i=1}^{n} v_{i} \otimes f_{i}$.
(b) Let $\operatorname{Rep}(G)$ and $\operatorname{comod}_{\mathrm{fd}}-\mathbb{k}[G]$ denote the categories of representations of G and of finite-dimensional right $\mathbb{k}[G]$-comodules, respectively, with the obvious notion of morphisms in each case. Show that these categories are isomorphic.
4. Let $G:=\mathbb{G}_{m}$ with coordinate algebra $\mathbb{k}[G]=\mathbb{k}\left[T, T^{-1}\right]$. Let $\rho: G \rightarrow V$ be a representation. For $n \in \mathbb{Z}$ let

$$
V_{n}:=\left\{v \in V \mid \rho(t)(v)=t^{n} v \text { for all } t \in G\right\} .
$$

Prove that $V=\bigoplus_{n \in \mathbb{Z}} V_{n}$. Hence, the Abelian category $\operatorname{Rep}(G)$ is semisimple, i.e., all representations decompose into a direct sum of irreducible representations.
(Hint. One way to proceed is to let $\eta: V \rightarrow \mathbb{k}\left[T, T^{-1}\right]$ be its comodule structure map. Assuming this sends $v \in V$ to $\sum_{n \in \mathbb{Z}} v_{n} \otimes T^{n}$, show that $v=\sum_{n \in \mathbb{Z}} v_{n}$ and $\left.v_{n} \in V_{n}.\right)$
5. An algebraic group G is said to be linearly reductive if the category $\operatorname{Rep}(G)$ is semisimple. For example, by Maschke's theorem, a finite group G (viewed as an algebraic group over our usual field \mathbb{k} of characteristic p) is linearly reductive if and only if either $p=0$ or $p \nmid|G|$.
(a) Show that $G \times H$ is linearly reductive if and only if both G and H are linearly reductive. Deduce from this and the previous question that any torus $T \cong \mathbb{G}_{m} \times \cdots \times \mathbb{G}_{m}$ (n times) is linearly reductive.
(b) Show that G is linearly reductive if and only if both G° and G / G° are linearly reductive.
(It is known that a connected algebraic group is linearly reductive if and only if $p>0$ and G is a torus, or $p=0$ and G is reductive, i.e., $G=T G^{\prime}$ for a torus $T \leq Z(G)$ and a semisimple group $G^{\prime} \leq G$.)

