
Introduction to Lie Theory
Homework #2

1. Calculate:

(a) The differential dm(e,e) : g ⊕ g → g of the multiplication map
m : G×G→ G for any algebraic group G.

(b) The differential die : g→ g of the group inversion map.

(c) The differential d(det)e : gln(k)→ k of the determinant morphism
det : GLn(k)→ Gm.

2. Assume in this question that p 6= 2.

(a) In class, we identified the Lie algebra of the group Sp2n(k) with
a subalgebra sp2n(k) of gl2n(k), and used this to deduce that
dimSp2n(k) = 2n2+n. Do the same thing with the group SOn(k).

(b) Now let S be the affine variety of n×n symmetric matrices. Note
that G := SLn(k) acts on S via the map G×S → S, (g, x) 7→ gTxg
(a morphism of varieties). Use this plus the following general
fact to calculate the dimension of SOn(k) in a different way: the
dimension of an orbit of a connected algebraic group is equal to
the dimension of the group minus the dimension of the identity
component of the stabilizer of a point in the orbit.

3. Recall the notion of a representation of an algebraic groupG from HW1,
Q5. A right k[G]-comodule is a vector space V together with a structure
map η : V → V ⊗k[G], that is, a linear map such that (id⊗∆)◦η = (η⊗
id) ◦ η and (id ⊗̄ε) ◦ η = id, where ∆ and ε denote the comultiplication
and counit on the coordinate algebra k[G], respectively.

(a) For a finite-dimensional right k[G]-comodule V , show that there
is a well-defined representation ρ : G→ GL(V ) such that

ρ(g)(v) =
n∑

i=1

fi(g)vi

for g ∈ G and v ∈ V with η(v) =
∑n

i=1 vi ⊗ fi.
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(b) Let Rep(G) and comodfd - k[G] denote the categories of represen-
tations of G and of finite-dimensional right k[G]-comodules, re-
spectively, with the obvious notion of morphisms in each case.
Show that these categories are isomorphic.

4. Let G := Gm with coordinate algebra k[G] = k[T, T−1]. Let ρ : G→ V
be a representation. For n ∈ Z let

Vn := {v ∈ V | ρ(t)(v) = tnv for all t ∈ G}.

Prove that V =
⊕

n∈Z Vn. Hence, the Abelian category Rep(G) is
semisimple, i.e., all representations decompose into a direct sum of
irreducible representations.

(Hint. One way to proceed is to let η : V → k[T, T−1] be its comodule
structure map. Assuming this sends v ∈ V to

∑
n∈Z vn⊗T n, show that

v =
∑

n∈Z vn and vn ∈ Vn.)

5. An algebraic group G is said to be linearly reductive if the category
Rep(G) is semisimple. For example, by Maschke’s theorem, a finite
group G (viewed as an algebraic group over our usual field k of char-
acteristic p) is linearly reductive if and only if either p = 0 or p - |G|.

(a) Show that G×H is linearly reductive if and only if both G and H
are linearly reductive. Deduce from this and the previous question
that any torus T ∼= Gm× · · · ×Gm (n times) is linearly reductive.

(b) Show that G is linearly reductive if and only if both G◦ and G/G◦

are linearly reductive.

(It is known that a connected algebraic group is linearly reductive if
and only if p > 0 and G is a torus, or p = 0 and G is reductive, i.e.,
G = TG′ for a torus T ≤ Z(G) and a semisimple group G′ ≤ G.)
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