
Introduction to Lie Theory
Homework #4

1. For a field k of characteristic zero, the Lie algebra so3(k) may be de-
fined as the Lie subalgebra of gl3(k) consisting of all skew-symmetric
matrices, while sl2(k) is of course the 2 × 2 matrices of trace zero in
gl2(k).

(a) Show that so3(R) is isomorphic to R3 viewed as a Lie algebra with
Lie bracket being the usual cross product of vectors.

(b) Show that so3(R) 6∼= sl2(R).

(c) Show that so3(C) ∼= sl2(C).

Hint. For (c) see Q3 below.

2. In L4-2, I explained how the universal enveloping algebra U(g) is a
Hopf algebra with comultiplication ∆ : U(g) → U(g) ⊗ U(g), counit
ε : U(g) → k and antipode S : U(g) → U(g) defined so that ∆(x) =
x⊗ 1 + 1⊗ x, ε(x) = 0 and S(x) = −x for all x ∈ g. Fill in the details!

3. The comultiplication ∆ on U(g) is important because it means you can
define the tensor product of two g-modules: if V and W are g-modules
then the tensor product V ⊗W (over the ground field k) is naturally a
U(g)⊗ U(g)-module with (x1 ⊗ x2)(v ⊗ w) = x1v ⊗ x2w; hence, using
the algebra homorphism ∆, it becomes a g-module.

(a) Show that the exterior and symmetric powers
∧n V and SnV of

a g-module V are g-module quotients of
⊗n V .

(b) Now suppose that g = sln(C) for n ≥ 2 and let V be the nat-
ural n-dimensional representation of column vectors. Show that∧i V (1 ≤ i ≤ n) and SjV (j ≥ 0) are both irreducible g-modules.
Is S2V irreducible over the subalgebra son(C)?

(c) Finally suppose that n = 2. Show that V and S2V possess non-
degenerate bilinear forms which are invariant under the action of
g, i.e., (xv, w) + (v, xw) = 0 for all x ∈ g and all vectors v, w.
Deduce that sl2(C) ∼= sp2(C) ∼= so3(C).

4. Let V and W be g-modules.
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(a) Verify that Homk(V,W ) can be made into a g-module by setting
(xf)(v) := xf(v)− f(xv) for x ∈ g, f ∈ Homk(V,W ) and v ∈ V .

(b) If V is finite-dimensional then Homk(V,W ) ∼= V ∗⊗W . What does
the g-module structure from (a) correspond to under this natural
isomorphism?

(c) For any g-module V , let V g := {v ∈ V | xv = 0 for all x ∈ g}
denote the submodule of g-invariants. For V,W as in (a), check
that

HomC(V,W )g = Homg(V,W ).

(d) Suppose that G is a connected algebraic group for k of charac-
teristic zero. If V is a representation of G, the submodule of
G-invariants is V G := {v ∈ V | gv = v for all g ∈ G}. Viewing V
as a g-module via the differential, show that V G = V g.

(e) Finally let V and W are representations of G. Explain how to
make HomC(V,W ) into a representation of G so that the g-module
structure from (a) is the naturally induced one. Deduce that
Homg(V,W ) = HomG(V,W ).

(Part (e) proves that the category of representations of G is a full
subcategory of the category of finite-dimensional representations of g.)

5. Let V be a vector space and T (V ) be its tensor algebra. Viewing the
associative algebra T (V ) as a Lie algebra via the commutator, let F (V )
be the Lie subalgebra of T (V ) generated by V .

(a) Prove that F (V ) together with the evident linear map V ↪→ F (V )
satisfies the appropriate universal property making it the free Lie
algebra on the vector space V .

(b) When V is one-dimensional, F (V ) = V . What can you say about
F (V ) in the case that V is two-dimensional with basis x, y?

(c) Now that the free Lie algebra is defined, you can make sense of
Lie algebras defined by generators and relations. Let g be the Lie
algebra with two generators x, y subject only to the relations

[x, [x, y]] = [y, [y, x]] = 0.

Prove that g is three-dimensional by identifying it with the Lie
algebra of all strictly upper triangular matrices in gl3(k).
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