Introduction to Lie Theory Homework #4

- For a field k of characteristic zero, the Lie algebra so₃(k) may be defined as the Lie subalgebra of gl₃(k) consisting of all skew-symmetric matrices, while sl₂(k) is of course the 2 × 2 matrices of trace zero in gl₂(k).
 - (a) Show that $\mathfrak{so}_3(\mathbb{R})$ is isomorphic to \mathbb{R}^3 viewed as a Lie algebra with Lie bracket being the usual cross product of vectors.
 - (b) Show that $\mathfrak{so}_3(\mathbb{R}) \not\cong \mathfrak{sl}_2(\mathbb{R})$.
 - (c) Show that $\mathfrak{so}_3(\mathbb{C}) \cong \mathfrak{sl}_2(\mathbb{C})$.

Hint. For (c) see Q3 below.

- 2. In L4-2, I explained how the universal enveloping algebra $U(\mathfrak{g})$ is a Hopf algebra with comultiplication $\Delta : U(\mathfrak{g}) \to U(\mathfrak{g}) \otimes U(\mathfrak{g})$, counit $\varepsilon : U(\mathfrak{g}) \to \Bbbk$ and antipode $S : U(\mathfrak{g}) \to U(\mathfrak{g})$ defined so that $\Delta(x) = x \otimes 1 + 1 \otimes x, \varepsilon(x) = 0$ and S(x) = -x for all $x \in \mathfrak{g}$. Fill in the details!
- 3. The comultiplication Δ on $U(\mathfrak{g})$ is important because it means you can define the *tensor product* of two \mathfrak{g} -modules: if V and W are \mathfrak{g} -modules then the tensor product $V \otimes W$ (over the ground field \Bbbk) is naturally a $U(\mathfrak{g}) \otimes U(\mathfrak{g})$ -module with $(x_1 \otimes x_2)(v \otimes w) = x_1 v \otimes x_2 w$; hence, using the algebra homorphism Δ , it becomes a \mathfrak{g} -module.
 - (a) Show that the exterior and symmetric powers $\bigwedge^n V$ and $S^n V$ of a \mathfrak{g} -module V are \mathfrak{g} -module quotients of $\bigotimes^n V$.
 - (b) Now suppose that $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$ for $n \geq 2$ and let V be the natural *n*-dimensional representation of column vectors. Show that $\bigwedge^i V \ (1 \leq i \leq n)$ and $S^j V \ (j \geq 0)$ are both irreducible \mathfrak{g} -modules. Is $S^2 V$ irreducible over the subalgebra $\mathfrak{so}_n(\mathbb{C})$?
 - (c) Finally suppose that n = 2. Show that V and S^2V possess nondegenerate bilinear forms which are invariant under the action of \mathfrak{g} , i.e., (xv, w) + (v, xw) = 0 for all $x \in \mathfrak{g}$ and all vectors v, w. Deduce that $\mathfrak{sl}_2(\mathbb{C}) \cong \mathfrak{sp}_2(\mathbb{C}) \cong \mathfrak{so}_3(\mathbb{C})$.
- 4. Let V and W be \mathfrak{g} -modules.

- (a) Verify that $\operatorname{Hom}_{\Bbbk}(V, W)$ can be made into a \mathfrak{g} -module by setting (xf)(v) := xf(v) f(xv) for $x \in \mathfrak{g}, f \in \operatorname{Hom}_{\Bbbk}(V, W)$ and $v \in V$.
- (b) If V is finite-dimensional then $\operatorname{Hom}_{\Bbbk}(V, W) \cong V^* \otimes W$. What does the \mathfrak{g} -module structure from (a) correspond to under this natural isomorphism?
- (c) For any \mathfrak{g} -module V, let $V^{\mathfrak{g}} := \{v \in V \mid xv = 0 \text{ for all } x \in \mathfrak{g}\}$ denote the submodule of \mathfrak{g} -invariants. For V, W as in (a), check that

$$\operatorname{Hom}_{\mathbb{C}}(V, W)^{\mathfrak{g}} = \operatorname{Hom}_{\mathfrak{g}}(V, W)$$

- (d) Suppose that G is a connected algebraic group for k of characteristic zero. If V is a representation of G, the submodule of G-invariants is $V^G := \{v \in V \mid gv = v \text{ for all } g \in G\}$. Viewing V as a \mathfrak{g} -module via the differential, show that $V^G = V^{\mathfrak{g}}$.
- (e) Finally let V and W are representations of G. Explain how to make Hom_ℂ(V, W) into a representation of G so that the g-module structure from (a) is the naturally induced one. Deduce that Hom_𝔅(V, W) = Hom_𝔅(V, W).

(Part (e) proves that the category of representations of G is a full subcategory of the category of finite-dimensional representations of \mathfrak{g} .)

- 5. Let V be a vector space and T(V) be its tensor algebra. Viewing the associative algebra T(V) as a Lie algebra via the commutator, let F(V) be the Lie subalgebra of T(V) generated by V.
 - (a) Prove that F(V) together with the evident linear map $V \hookrightarrow F(V)$ satisfies the appropriate universal property making it the *free Lie* algebra on the vector space V.
 - (b) When V is one-dimensional, F(V) = V. What can you say about F(V) in the case that V is two-dimensional with basis x, y?
 - (c) Now that the free Lie algebra is defined, you can make sense of Lie algebras defined by generators and relations. Let \mathfrak{g} be the Lie algebra with two generators x, y subject only to the relations

$$[x, [x, y]] = [y, [y, x]] = 0.$$

Prove that \mathfrak{g} is three-dimensional by identifying it with the Lie algebra of all strictly upper triangular matrices in $\mathfrak{gl}_3(\Bbbk)$.