Introduction to Lie Theory

Homework \#4

1. For a field \mathbb{k} of characteristic zero, the Lie algebra $\mathfrak{s o}_{3}(\mathbb{k})$ may be defined as the Lie subalgebra of $\mathfrak{g l}_{3}(\mathbb{k})$ consisting of all skew-symmetric matrices, while $\mathfrak{s l}_{2}(\mathbb{k})$ is of course the 2×2 matrices of trace zero in $\mathfrak{g l}_{2}(\mathbb{k})$.
(a) Show that $\mathfrak{s o}_{3}(\mathbb{R})$ is isomorphic to \mathbb{R}^{3} viewed as a Lie algebra with Lie bracket being the usual cross product of vectors.
(b) Show that $\mathfrak{s o}_{3}(\mathbb{R}) \not \neq \mathfrak{s l}_{2}(\mathbb{R})$.
(c) Show that $\mathfrak{s o}_{3}(\mathbb{C}) \cong \mathfrak{s l}_{2}(\mathbb{C})$.

Hint. For (c) see Q3 below.
2. In L4-2, I explained how the universal enveloping algebra $U(\mathfrak{g})$ is a Hopf algebra with comultiplication $\Delta: U(\mathfrak{g}) \rightarrow U(\mathfrak{g}) \otimes U(\mathfrak{g})$, counit $\varepsilon: U(\mathfrak{g}) \rightarrow \mathbb{k}$ and antipode $S: U(\mathfrak{g}) \rightarrow U(\mathfrak{g})$ defined so that $\Delta(x)=$ $x \otimes 1+1 \otimes x, \varepsilon(x)=0$ and $S(x)=-x$ for all $x \in \mathfrak{g}$. Fill in the details!
3. The comultiplication Δ on $U(\mathfrak{g})$ is important because it means you can define the tensor product of two \mathfrak{g}-modules: if V and W are \mathfrak{g}-modules then the tensor product $V \otimes W$ (over the ground field \mathbb{k}) is naturally a $U(\mathfrak{g}) \otimes U(\mathfrak{g})$-module with $\left(x_{1} \otimes x_{2}\right)(v \otimes w)=x_{1} v \otimes x_{2} w ;$ hence, using the algebra homorphism Δ, it becomes a \mathfrak{g}-module.
(a) Show that the exterior and symmetric powers $\bigwedge^{n} V$ and $S^{n} V$ of a \mathfrak{g}-module V are \mathfrak{g}-module quotients of $\bigotimes^{n} V$.
(b) Now suppose that $\mathfrak{g}=\mathfrak{s l}_{n}(\mathbb{C})$ for $n \geq 2$ and let V be the natural n-dimensional representation of column vectors. Show that $\bigwedge^{i} V(1 \leq i \leq n)$ and $S^{j} V(j \geq 0)$ are both irreducible \mathfrak{g}-modules. Is $S^{2} V$ irreducible over the subalgebra $\mathfrak{s o}_{n}(\mathbb{C})$?
(c) Finally suppose that $n=2$. Show that V and $S^{2} V$ possess nondegenerate bilinear forms which are invariant under the action of \mathfrak{g}, i.e., $(x v, w)+(v, x w)=0$ for all $x \in \mathfrak{g}$ and all vectors v, w. Deduce that $\mathfrak{s l}_{2}(\mathbb{C}) \cong \mathfrak{s p}_{2}(\mathbb{C}) \cong \mathfrak{s o}_{3}(\mathbb{C})$.
4. Let V and W be \mathfrak{g}-modules.
(a) Verify that $\operatorname{Hom}_{\mathfrak{k}}(V, W)$ can be made into a \mathfrak{g}-module by setting $(x f)(v):=x f(v)-f(x v)$ for $x \in \mathfrak{g}, f \in \operatorname{Hom}_{\mathfrak{k}}(V, W)$ and $v \in V$.
(b) If V is finite-dimensional then $\operatorname{Hom}_{\mathfrak{k}}(V, W) \cong V^{*} \otimes W$. What does the \mathfrak{g}-module structure from (a) correspond to under this natural isomorphism?
(c) For any \mathfrak{g}-module V, let $V^{\mathfrak{g}}:=\{v \in V \mid x v=0$ for all $x \in \mathfrak{g}\}$ denote the submodule of \mathfrak{g}-invariants. For V, W as in (a), check that

$$
\operatorname{Hom}_{\mathbb{C}}(V, W)^{\mathfrak{g}}=\operatorname{Hom}_{\mathfrak{g}}(V, W)
$$

(d) Suppose that G is a connected algebraic group for \mathbb{k} of characteristic zero. If V is a representation of G, the submodule of G-invariants is $V^{G}:=\{v \in V \mid g v=v$ for all $g \in G\}$. Viewing V as a \mathfrak{g}-module via the differential, show that $V^{G}=V^{\mathfrak{g}}$.
(e) Finally let V and W are representations of G. Explain how to make $\operatorname{Hom}_{\mathbb{C}}(V, W)$ into a representation of G so that the \mathfrak{g}-module structure from (a) is the naturally induced one. Deduce that $\operatorname{Hom}_{\mathfrak{g}}(V, W)=\operatorname{Hom}_{G}(V, W)$.
(Part (e) proves that the category of representations of G is a full subcategory of the category of finite-dimensional representations of \mathfrak{g}.)
5. Let V be a vector space and $T(V)$ be its tensor algebra. Viewing the associative algebra $T(V)$ as a Lie algebra via the commutator, let $F(V)$ be the Lie subalgebra of $T(V)$ generated by V.
(a) Prove that $F(V)$ together with the evident linear map $V \hookrightarrow F(V)$ satisfies the appropriate universal property making it the free Lie algebra on the vector space V.
(b) When V is one-dimensional, $F(V)=V$. What can you say about $F(V)$ in the case that V is two-dimensional with basis x, y ?
(c) Now that the free Lie algebra is defined, you can make sense of Lie algebras defined by generators and relations. Let \mathfrak{g} be the Lie algebra with two generators x, y subject only to the relations

$$
[x,[x, y]]=[y,[y, x]]=0 .
$$

Prove that \mathfrak{g} is three-dimensional by identifying it with the Lie algebra of all strictly upper triangular matrices in $\mathfrak{g l}_{3}(\mathbb{k})$.

