Introduction to Lie Theory
Homework \#5

1. Prove the Clebsch-Gordon rule for representations of $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{C})$:

$$
L(\lambda) \otimes L(\mu) \cong \bigoplus_{\substack{|\lambda-\mu| \leq \nu \leq \lambda+\mu \\ \nu \equiv \lambda+\mu \\(\bmod 2)}} L(\nu)
$$

for $\lambda, \mu \in \mathbb{N}$. Use this to calculate the dimension of the space $\left(V^{\otimes 10}\right)^{G}$ of invariants of $G=S L_{2}(\mathbb{C})$ acting on the tenth tensor power of its natural representation.

The remaining questions questions are concerned with the algebra of distributions $\operatorname{Dist}(G)$ of a connected algebraic group G from L4-3. Recall that this is the subalgebra

$$
\operatorname{Dist}(G)=\left\{\theta \in \mathbb{k}[G]^{*} \mid \theta\left(M_{e}^{n+1}\right)=0 \text { for } n \gg 0\right\}=\bigcup_{n \geq 0}\left(M_{e}^{n+1}\right)^{\circ}
$$

of $\mathbb{k}[G]^{*}$ viewed as an algebra via the dual map to the comultiplication m^{*} on $\mathbb{k}[G]$ (here, e is the unit element of G). It is a Hopf algebra with comultiplication Δ arising from the dual of the commutative multiplication on $\mathbb{k}[G]$ and counit $\varepsilon: \operatorname{Dist}(G) \rightarrow \mathbb{k}, \theta \mapsto \theta(1)$ (here, 1 is the identity in the associative algebra $\mathbb{k}[G])$.
2. The Lie algebra \mathfrak{g} of G may be identified with the subspace

$$
\left(M_{e} / M_{e}^{2}\right)^{*}=\left\{\theta \in\left(M_{e}^{2}\right)^{\circ} \mid \theta(1)=0\right\}
$$

of $\operatorname{Dist}(G)$. Verify that this subspace is indeed a Lie subalgebra of $\operatorname{Dist}(G)$, then show that this approach to the definition of \mathfrak{g} is equivalent to the approach taken in L3-1.

In characteristic zero, a theorem of Cartier mentioned in the lectures shows that the Lie algebra homomorphism $\mathfrak{g} \rightarrow \operatorname{Dist}(G)$ from Q2 induces an algebra isomorphism $U(\mathfrak{g}) \xrightarrow{\sim} \operatorname{Dist}(G)$.
3. Calculate $\operatorname{Dist}(G)$ explicitly for $G=\mathbb{G}_{a}$. Recall for this that the coordinate algebra is $\mathbb{k}[T]$ and $m^{*}(T)=T \otimes 1+1 \otimes T$. You should show
first that $\operatorname{Dist}(G)$ has a basis $\left\{x_{n} \mid n \geq 0\right\}$ such that $x_{i}\left(T^{j}\right)=\delta_{i, j}$, and then that the algebra structure satisfies

$$
x_{n} x_{m}=\binom{n+m}{n} x_{n+m} .
$$

Finally, assuming $\mathbb{k}=\mathbb{C}$, show directly that $\operatorname{Dist}(G) \cong U(\mathfrak{g})$. What element of $U(\mathfrak{g})=\mathbb{C}[x]$ does x_{n} correspond to under the canonical isomorphism?
4. Let $G=\mathbb{G}_{m}$ with coordinate algebra $\mathbb{k}\left[T, T^{-1}\right]$. Let R be the ring of integer-valued polynomials, that is, the subring of $\mathbb{Q}[x]$ consisting of polynomials $f(x)$ such that $f(n) \in \mathbb{Z}$ for all $n \in \mathbb{Z}$. Note that R is spanned as a \mathbb{Z}-module by the polynomials

$$
\binom{x}{n}:=x(x-1) \cdots(x-n+1) / n!
$$

for $n \geq 0$, and also $x\binom{x}{n}=(n+1)\binom{x}{n+1}+n\binom{x}{n}$.
(a) Show that $\operatorname{Dist}(G)$ has basis $\left\{x_{n} \mid n \geq 0\right\}$ with $x_{i}\left((T-1)^{j}\right)=\delta_{i, j}$ and that $x_{1} x_{n}=(n+1) x_{n+1}+n x_{n}$. Deduce that $\operatorname{Dist}(G) \cong \mathbb{k} \otimes_{\mathbb{Z}} R$.
(b) Now assume that $\mathbb{k}=\mathbb{C}$. Use (a) to verify directly that $\operatorname{Dist}(G) \cong$ $U(\mathfrak{g})$. What element of $U(\mathfrak{g})=\mathbb{k}[x]$ does x_{n} correspond to under your isomorphism?

For a representation V of G, let $\eta: V \rightarrow V \otimes \mathbb{k}[G]$ be its comodule structure map as in HW2-3. You can make V into a $\operatorname{Dist}(G)$-module by defining $\theta v:=\left(\operatorname{id}_{V} \bar{\otimes} \theta\right)(\eta(v))$. If you identify \mathfrak{g} with a Lie subalgebra of $\operatorname{Dist}(G)$ as in Q2, this makes V into a \mathfrak{g}-module, and this construction agrees with the \mathfrak{g}-module structure on V discussed in L3-3.
5. Assuming that char $\mathbb{k}=0$ whenever necessary, establish the following equalities):

$$
\begin{aligned}
V^{G} & =\{v \in V \mid g v=v \text { for all } g \in G\} \\
& =\{v \in V \mid \eta(v)=v \otimes 1\} \\
& =\{v \in V \mid \theta v=\varepsilon(\theta) v \text { for all } \theta \in \operatorname{Dist}(G)\} \\
& =\{v \in V \mid x v=0 \text { for all } x \in \mathfrak{g}\}=V^{\mathfrak{g}} .
\end{aligned}
$$

This gives another approach to showing $V^{G}=V^{\mathfrak{g}}$; cf. HW4-4.
(Hint. $\bigcap_{n \geq 0} M_{e}^{n+1}=0$ by Krull's intersection theorem.)

