
Introduction to Lie Theory
Homework #5

1. Prove the Clebsch-Gordon rule for representations of g = sl2(C):

L(λ)⊗ L(µ) ∼=
⊕

|λ−µ|≤ν≤λ+µ
ν≡λ+µ (mod 2)

L(ν)

for λ, µ ∈ N. Use this to calculate the dimension of the space (V ⊗10)G

of invariants of G = SL2(C) acting on the tenth tensor power of its
natural representation.

The remaining questions questions are concerned with the algebra of distri-
butions Dist(G) of a connected algebraic group G from L4-3. Recall that this
is the subalgebra

Dist(G) = {θ ∈ k[G]∗ | θ(Mn+1
e ) = 0 for n� 0} =

⋃
n≥0

(
Mn+1

e

)◦
of k[G]∗ viewed as an algebra via the dual map to the comultiplication m∗

on k[G] (here, e is the unit element of G). It is a Hopf algebra with co-
multiplication ∆ arising from the dual of the commutative multiplication on
k[G] and counit ε : Dist(G) → k, θ 7→ θ(1) (here, 1 is the identity in the
associative algebra k[G]).

2. The Lie algebra g of G may be identified with the subspace

(Me/M
2
e )∗ =

{
θ ∈

(
M2

e

)◦ ∣∣ θ(1) = 0
}

of Dist(G). Verify that this subspace is indeed a Lie subalgebra of
Dist(G), then show that this approach to the definition of g is equivalent
to the approach taken in L3-1.

In characteristic zero, a theorem of Cartier mentioned in the lectures shows
that the Lie algebra homomorphism g→ Dist(G) from Q2 induces an algebra
isomorphism U(g)

∼→ Dist(G).

3. Calculate Dist(G) explicitly for G = Ga. Recall for this that the coor-
dinate algebra is k[T ] and m∗(T ) = T ⊗ 1 + 1 ⊗ T . You should show
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first that Dist(G) has a basis {xn | n ≥ 0} such that xi(T
j) = δi,j, and

then that the algebra structure satisfies

xnxm =

(
n+m

n

)
xn+m.

Finally, assuming k = C, show directly that Dist(G) ∼= U(g). What
element of U(g) = C[x] does xn correspond to under the canonical
isomorphism?

4. Let G = Gm with coordinate algebra k[T, T−1]. Let R be the ring of
integer-valued polynomials, that is, the subring of Q[x] consisting of
polynomials f(x) such that f(n) ∈ Z for all n ∈ Z. Note that R is
spanned as a Z-module by the polynomials(

x

n

)
:= x(x− 1) · · · (x− n+ 1)/n!

for n ≥ 0, and also x
(
x
n

)
= (n+ 1)

(
x

n+1

)
+ n
(
x
n

)
.

(a) Show that Dist(G) has basis {xn | n ≥ 0} with xi((T − 1)j) = δi,j
and that x1xn = (n+1)xn+1+nxn. Deduce that Dist(G) ∼= k⊗ZR.

(b) Now assume that k = C. Use (a) to verify directly that Dist(G) ∼=
U(g). What element of U(g) = k[x] does xn correspond to under
your isomorphism?

For a representation V of G, let η : V → V ⊗ k[G] be its comodule structure
map as in HW2-3. You can make V into a Dist(G)-module by defining
θv := (idV ⊗̄θ)(η(v)). If you identify g with a Lie subalgebra of Dist(G) as
in Q2, this makes V into a g-module, and this construction agrees with the
g-module structure on V discussed in L3-3.

5. Assuming that char k = 0 whenever necessary, establish the following
equalities):

V G = {v ∈ V | gv = v for all g ∈ G}
= {v ∈ V | η(v) = v ⊗ 1}
= {v ∈ V | θv = ε(θ)v for all θ ∈ Dist(G)}
= {v ∈ V | xv = 0 for all x ∈ g} = V g.

This gives another approach to showing V G = V g; cf. HW4-4.

(Hint.
⋂
n≥0M

n+1
e = 0 by Krull’s intersection theorem.)
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