Introduction to Lie Theory Homework #6

1. Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ be a direct sum of two Lie algebras. Let V be a finite-dimensional \mathfrak{g} -module. Prove that V is completely reducible as a \mathfrak{g} -module if and only it is completely reducible both as a \mathfrak{g}_1 -module and as a \mathfrak{g}_2 -module.

(*Hint.* Consider the finite-dimensional algebra A that is the image of $U(\mathfrak{g})$ under the induced algebra homomorphism $\rho: U(\mathfrak{g}) \to \operatorname{End}_{\mathbb{C}}(V)$, use Wedderburn theorem.)

- 2. Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra with Killing form κ . We showed in L6-2 that \mathfrak{g} is the direct sum $\mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_n$ of its simple ideals, with $\mathfrak{g}_i \perp_{\kappa} \mathfrak{g}_j$ for $i \neq j$. Let β be some other invariant bilinear form on \mathfrak{g} . Prove:
 - (a) $\beta|_{\mathfrak{g}_i}$ is a multiple of the Killing form $\kappa|_{\mathfrak{g}_i}$ for each $i = 1, \ldots, n$.
 - (b) $\mathfrak{g}_i \perp_{\beta} \mathfrak{g}_i$ for $i \neq j$.
 - (c) β is a symmetric bilinear form.

The remaining questions require the notion of a *toral subalgebra* \mathfrak{t} of a finitedimensional semisimple Lie algebra \mathfrak{g} . Recall that this is a subalgebra consisting entirely of semisimple elements of \mathfrak{g} . As established in L7-1, such a subalgebra is necessarily Abelian. Hence, there is a *root space decomposition*

$$\mathfrak{g}=\mathfrak{g}_0\oplus igoplus_{lpha\in R}\mathfrak{g}_lpha$$

where $R = \{0 \neq \alpha \in \mathfrak{t}^* \mid \mathfrak{g}_{\alpha} \neq 0\}$ is the set of *roots* of \mathfrak{g} with respect to \mathfrak{t} . Here,

$$\mathfrak{g}_{\alpha} = \{ x \in \mathfrak{t} \mid [t, x] = \alpha(t)x \text{ for all } t \in \mathfrak{t} \}$$

for any $\alpha \in \mathfrak{t}^*$.

3. Suppose that \mathfrak{t} is a toral subalgebra of a finite-dimensional semisimple Lie algebra \mathfrak{g} such that \mathfrak{t} is equal to its centralizer $\mathfrak{c}_{\mathfrak{g}}(\mathfrak{t})$. Why does this imply that \mathfrak{t} is actually a *maximal* toral subalgebra of \mathfrak{g} ? Use this observation to show that the subalgebra of $\mathfrak{sl}_n(\mathbb{C})$ consisting of all diagonal matrices of trace zero is a maximal toral subalgebra. Now let $\mathfrak{g} = \mathfrak{sp}_{2n}(\mathbb{C})$ using the coordinates chosen in L3-2. Let \mathfrak{t} be the subalgebra of all diagonal matrices in \mathfrak{g} , and note that any element $t \in \mathfrak{t}$ can be written as $t = \operatorname{diag}(t_1, \ldots, t_n, -t_n, \ldots, -t_1)$ for $t_1, \ldots, t_n \in \mathbb{C}$. Let $\varepsilon_i \in \mathfrak{t}^*$ be the linear map sending $t \mapsto t_i$ for $i = 1, \ldots, n$, so that $\varepsilon_1, \ldots, \varepsilon_n$ give a basis for \mathfrak{t}^* .

4. Describe the root space decomposition of $\mathfrak{g} = \mathfrak{sp}_{2n}(\mathbb{C})$ with respect to \mathfrak{t} using the notation just introduced. You should show in particular that

$$R = \{ \pm \varepsilon_i \pm \varepsilon_j, \pm 2\varepsilon_k \mid 1 \le i < j \le n, 1 \le k \le n \},\$$

that \mathfrak{g}_{α} is one-dimensional for each $\alpha \in R$, and that $\mathfrak{g}_0 = \mathfrak{t}$. Deduce that \mathfrak{t} is a maximal toral subalgebra.

- 5. Let $V = \mathbb{C}^{2n}$ be the natural representation of $\mathfrak{g} = \mathfrak{sp}_{2n}(\mathbb{C})$ denoting its standard ordered basis $v_1, \ldots, v_n, v_{-n}, \ldots, v_{-1}$.
 - (a) We noted in L5-3 that V is an irreducible \mathfrak{g} -module. Convince yourself of this again! It follows that \mathfrak{g} is indeed a semisimple Lie algebra.
 - (b) Show that v_i is of weight ε_i and v_{-i} is of weight $-\varepsilon_i$, where $\varepsilon_1, \ldots, \varepsilon_n \in \mathfrak{t}^*$ are as defined above.
 - (c) Describe how $S^2(V)$ decomposes into weight spaces with respect to \mathfrak{t} . Then show that $S^2(V) \cong \mathfrak{g}$ (the adjoint representation) as \mathfrak{g} -modules.
 - (d) Show that $S^2(V)$ is an irreducible \mathfrak{g} -module. Deduce that \mathfrak{g} is a simple Lie algebra.

(*Hint*. For (a) and/or (d) you might find it easier to prove irreducibility as representations of the algebraic group $G = Sp_{2n}(\mathbb{C})$.)