Introduction to Lie Theory
Homework #6

1. Let \(g = g_1 \oplus g_2 \) be a direct sum of two Lie algebras. Let \(V \) be a finite-dimensional \(g \)-module. Prove that \(V \) is completely reducible as a \(g \)-module if and only if it is completely reducible both as a \(g_1 \)-module and as a \(g_2 \)-module.

(\textit{Hint.} Consider the finite-dimensional algebra \(A \) that is the image of \(U(g) \) under the induced algebra homomorphism \(\rho : U(g) \to \text{End}_C(V) \), use Wedderburn theorem.)

2. Let \(g \) be a finite-dimensional semisimple Lie algebra with Killing form \(\kappa \). We showed in L6-2 that \(g \) is the direct sum \(g_1 \oplus \cdots \oplus g_n \) of its simple ideals, with \(g_i \perp \kappa g_j \) for \(i \neq j \). Let \(\beta \) be some other invariant bilinear form on \(g \). Prove:

(a) \(\beta |_{g_i} \) is a multiple of the Killing form \(\kappa |_{g_i} \) for each \(i = 1, \ldots, n \).
(b) \(g_i \perp \beta g_i \) for \(i \neq j \).
(c) \(\beta \) is a symmetric bilinear form.

The remaining questions require the notion of a \emph{toral subalgebra} \(t \) of a finite-dimensional semisimple Lie algebra \(g \). Recall that this is a subalgebra consisting entirely of semisimple elements of \(g \). As established in L7-1, such a subalgebra is necessarily Abelian. Hence, there is a \emph{root space decomposition}

\[
g = g_0 \oplus \bigoplus_{\alpha \in R} g_{\alpha}
\]

where \(R = \{0 \neq \alpha \in t^* \mid g_{\alpha} \neq 0\} \) is the set of \emph{roots} of \(g \) with respect to \(t \). Here,

\[
g_{\alpha} = \{x \in t \mid [t,x] = \alpha(t)x \text{ for all } t \in t\}
\]

for any \(\alpha \in t^* \).

3. Suppose that \(t \) is a toral subalgebra of a finite-dimensional semisimple Lie algebra \(g \) such that \(t \) is equal to its centralizer \(c_g(t) \). Why does this imply that \(t \) is actually a \emph{maximal} toral subalgebra of \(g \)? Use this observation to show that the subalgebra of \(\text{sl}_n(\mathbb{C}) \) consisting of all diagonal matrices of trace zero is a maximal toral subalgebra.
Now let $g = \mathfrak{sp}_{2n}(\mathbb{C})$ using the coordinates chosen in L3-2. Let t be the subalgebra of all diagonal matrices in g, and note that any element $t \in t$ can be written as $t = \text{diag}(t_1, \ldots, t_n, -t_n, \ldots, -t_1)$ for $t_1, \ldots, t_n \in \mathbb{C}$. Let $\varepsilon_i \in t^*$ be the linear map sending $t \mapsto t_i$ for $i = 1, \ldots, n$, so that $\varepsilon_1, \ldots, \varepsilon_n$ give a basis for t^*.

4. Describe the root space decomposition of $g = \mathfrak{sp}_{2n}(\mathbb{C})$ with respect to t using the notation just introduced. You should show in particular that

$$R = \{ \pm \varepsilon_i \pm \varepsilon_j, \pm 2\varepsilon_k \mid 1 \leq i < j \leq n, 1 \leq k \leq n \},$$

that g_α is one-dimensional for each $\alpha \in R$, and that $g_0 = t$. Deduce that t is a maximal toral subalgebra.

5. Let $V = \mathbb{C}^{2n}$ be the natural representation of $g = \mathfrak{sp}_{2n}(\mathbb{C})$ denoting its standard ordered basis $v_1, \ldots, v_n, v_{-n}, \ldots, v_{-1}$.

(a) We noted in L5-3 that V is an irreducible g-module. Convince yourself of this again! It follows that g is indeed a semisimple Lie algebra.

(b) Show that v_i is of weight ε_i and v_{-i} is of weight $-\varepsilon_i$, where $\varepsilon_1, \ldots, \varepsilon_n \in t^*$ are as defined above.

(c) Describe how $S^2(V)$ decomposes into weight spaces with respect to t. Then show that $S^2(V) \cong g$ (the adjoint representation) as g-modules.

(d) Show that $S^2(V)$ is an irreducible g-module. Deduce that g is a simple Lie algebra.

(Hint. For (a) and/or (d) you might find it easier to prove irreducibility as representations of the algebraic group $G = Sp_{2n}(\mathbb{C})$.)