Introduction to Lie Theory
 Homework \#6

1. Let $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ be a direct sum of two Lie algebras. Let V be a finite-dimensional \mathfrak{g}-module. Prove that V is completely reducible as a \mathfrak{g}-module if and only it is completely reducible both as a \mathfrak{g}_{1}-module and as a \mathfrak{g}_{2}-module.
(Hint. Consider the finite-dimensional algebra A that is the image of $U(\mathfrak{g})$ under the induced algebra homomorphism $\rho: U(\mathfrak{g}) \rightarrow \operatorname{End}_{\mathbb{C}}(V)$, use Wedderburn theorem.)
2. Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra with Killing form κ. We showed in L6-2 that \mathfrak{g} is the direct sum $\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{n}$ of its simple ideals, with $\mathfrak{g}_{i} \perp_{\kappa} \mathfrak{g}_{j}$ for $i \neq j$. Let β be some other invariant bilinear form on \mathfrak{g}. Prove:
(a) $\left.\beta\right|_{\mathfrak{g}_{i}}$ is a multiple of the Killing form $\left.\kappa\right|_{\mathfrak{g}_{i}}$ for each $i=1, \ldots, n$.
(b) $\mathfrak{g}_{i} \perp_{\beta} \mathfrak{g}_{i}$ for $i \neq j$.
(c) β is a symmetric bilinear form.

The remaining questions require the notion of a toral subalgebra \mathfrak{t} of a finitedimensional semisimple Lie algebra \mathfrak{g}. Recall that this is a subalgebra consisting entirely of semisimple elements of \mathfrak{g}. As established in L7-1, such a subalgebra is necessarily Abelian. Hence, there is a root space decomposition

$$
\mathfrak{g}=\mathfrak{g}_{0} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha}
$$

where $R=\left\{0 \neq \alpha \in \mathfrak{t}^{*} \mid \mathfrak{g}_{\alpha} \neq 0\right\}$ is the set of roots of \mathfrak{g} with respect to \mathfrak{t}. Here,

$$
\mathfrak{g}_{\alpha}=\{x \in \mathfrak{t} \mid[t, x]=\alpha(t) x \text { for all } t \in \mathfrak{t}\}
$$

for any $\alpha \in \mathfrak{t}^{*}$.
3. Suppose that \mathfrak{t} is a toral subalgebra of a finite-dimensional semisimple Lie algebra \mathfrak{g} such that \mathfrak{t} is equal to its centralizer $\mathfrak{c}_{\mathfrak{g}}(\mathfrak{t})$. Why does this imply that \mathfrak{t} is actually a maximal toral subalgebra of \mathfrak{g} ? Use this observation to show that the subalgebra of $\mathfrak{s l}_{n}(\mathbb{C})$ consisting of all diagonal matrices of trace zero is a maximal toral subalgebra.

Now let $\mathfrak{g}=\mathfrak{s p}_{2 n}(\mathbb{C})$ using the coordinates chosen in L3-2. Let \mathfrak{t} be the subalgebra of all diagonal matrices in \mathfrak{g}, and note that any element $t \in \mathfrak{t}$ can be written as $t=\operatorname{diag}\left(t_{1}, \ldots, t_{n},-t_{n}, \ldots,-t_{1}\right)$ for $t_{1}, \ldots, t_{n} \in \mathbb{C}$. Let $\varepsilon_{i} \in \mathfrak{t}^{*}$ be the linear map sending $t \mapsto t_{i}$ for $i=1, \ldots, n$, so that $\varepsilon_{1}, \ldots, \varepsilon_{n}$ give a basis for \mathfrak{t}^{*}.
4. Describe the root space decomposition of $\mathfrak{g}=\mathfrak{s p}_{2 n}(\mathbb{C})$ with respect to \mathfrak{t} using the notation just introduced. You should show in particular that

$$
R=\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j}, \pm 2 \varepsilon_{k} \mid 1 \leq i<j \leq n, 1 \leq k \leq n\right\}
$$

that \mathfrak{g}_{α} is one-dimensional for each $\alpha \in R$, and that $\mathfrak{g}_{0}=\mathfrak{t}$. Deduce that \mathfrak{t} is a maximal toral subalgebra.
5. Let $V=\mathbb{C}^{2 n}$ be the natural representation of $\mathfrak{g}=\mathfrak{s p}_{2 n}(\mathbb{C})$ denoting its standard ordered basis $v_{1}, \ldots, v_{n}, v_{-n}, \ldots, v_{-1}$.
(a) We noted in L5-3 that V is an irreducible \mathfrak{g}-module. Convince yourself of this again! It follows that \mathfrak{g} is indeed a semisimple Lie algebra.
(b) Show that v_{i} is of weight ε_{i} and v_{-i} is of weight $-\varepsilon_{i}$, where $\varepsilon_{1}, \ldots, \varepsilon_{n} \in \mathfrak{t}^{*}$ are as defined above.
(c) Describe how $S^{2}(V)$ decomposes into weight spaces with respect to \mathfrak{t}. Then show that $S^{2}(V) \cong \mathfrak{g}$ (the adjoint representation) as \mathfrak{g}-modules.
(d) Show that $S^{2}(V)$ is an irreducible \mathfrak{g}-module. Deduce that \mathfrak{g} is a simple Lie algebra.
(Hint. For (a) and/or (d) you might find it easier to prove irreducibility as representations of the algebraic group $G=S p_{2 n}(\mathbb{C})$.)

