Ch. O Why lie algebras?
Acweys abebors mean IK-algebras A for sone field $\mathbb{K}$, unally $\mathbb{K}=\pi$.
Main topic : finite-dineirional semiruple

Example Let Abe any arrocatui algeba
$x y$
Define $[x, y]=x y-y x$. "commutator"
This makes $A$ üts a Liè agebor Anti-symnety J Jacobi?

$$
\psi_{0}[x, y z]=[x, y] z+y[x, z]
$$

$$
\text { - }[x,[y, z]]=[[x, y] z]+[y[x t]] b
$$

The latter rewntes to give Jachi.
Tays that $D_{x}: A \rightarrow A, a \mapsto[x, a]$ is a derrivation of assoc algebra $A$ (Leibniz/posduct nule)

Lè algebas $\mathbb{C}$

A Lie argha is a vectorsbace of plus a bilnear map

$$
[\cdot, \cdot]: o g \times o] \rightarrow o\}
$$

satorizing
(1) (anti-symnetry) $[x, x]=0 \quad \forall x \in O$
(2) (Jacobi deiitly)

$$
\begin{aligned}
& \text { (Jacobi ideilly) } \\
& {[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0} \\
& \forall r, y z \in 0
\end{aligned}
$$

$$
\forall x, y, z \in o]
$$

Soys that $\left.D_{x}: 0\right) \rightarrow 0$, $a \mapsto[x, a]$ is a denation of Lie algebro or

For examole, take $A=M_{n}(k)$ ( $n \times n$ matuces ucler notivi mult.)
Then the above cousturction turnuig A cito a Lie algebor produces the Lie algebsa ogln $(\mathbb{K})$, the geneal lueair lie algeba.

The defintion of Lie atgabon probably seem unmotuoted!!
I'n gaig to sperd 2 weeles talking urliad about
Manided op Lre thony. Lie algebras are eary
algebcaic groups

- There's a ves tggit connection between structwe of a connected algebrui grous/ $\mathbb{C}$ and ts Lie algeha
with my goal being to explain why Lie algebess?? lreaized yrups undegraduate: firide
toprlogit: compact Lie, eg $\mathrm{S}, \mathrm{SO}_{3}$
aralyst: locally conpact, $(\mathbb{R},+)$
algebraui : me!!

Why Lie algebras? Algebraic groyps.
Now I'm gaig to defue algebraic gayes. Much nove difficult as the defrition rects on some language from alpbaici geomet,

Background form alopbrie geonety

- $\mathbb{K}_{k}=\mathbb{K}$ (usually $\mathbb{K}_{\mathrm{K}}=\mathbb{C}$ )

Meaus: $\mathbb{K}\left[T_{1, \ldots}, T_{n}\right] \rightarrow \mathbb{K}[x]$ some $n$
$\therefore$ by bilbert baris theowen, get that $\downarrow \|[x]$ is Noetzeran.

- affire vanety $X$ is a set plus a specyfeed firivity geneseted algebo coorduate algebor of $X$
neear: $\sqrt{K}[X]$ is subalgeben of $\operatorname{Ma\rho }(X, k)$ commutatué automatically reduced (no non-zess mipoterteleneits)
$X_{\text {ALL fuction }} X \rightarrow I K$ under poritasie opeatuir (comnutative)
- If $X$ is ar affine variety, have Zariski topolegy on $X$
(99) $\mathbb{A}^{n} \begin{gathered}\text { affrie } \\ n \text { repace }\end{gathered}$ in whech the clored jets are the sets
"varibing." $v(I)=\{x \in X \mid f(x)=0 \quad \forall f \in I\}$ Set $\mathbb{K}^{n}$ of 1 - theles of clenut a $1 k$ $\mathbb{K}\left[A^{n}\right]=\mathbb{k}\left[T_{1} \ldots, T_{1}\right]$ $T_{i}=i t h$ cor deduat fundin for $I \unlhd \mathbb{k}[x]$
$I_{f} I=\left(f_{k} \ldots f_{n}\right)$ then $V(I)=V\left(f_{1}\right) \cap \ldots V\left(f_{n}\right)$ $(f \in \mathbb{K}[x])$
Let $D(f)=X-V(f) \quad " f(x) \neq 0 "$ pariciaal open subuet Note $D(f)$ is open, and aly open set is a finite unoin of pricical opens. In parhulou, $D(f)$ 's are a bave for the zaikki toroscogs.
- Call $X$ irrediuike if canot wide $X$ as $X=X, \cup X_{2}$ for poper closed rubets $X_{11} X_{2} \Leftrightarrow \mathbb{K}[X]$ is an integal domain
- Nullstelleratz Note $V(f)=V\left(f^{2}\right)=\cdots$ so $V(I)=V(\sqrt{I})$

$$
\mathbb{K}[X] / \sqrt{I} \text { in sediced }
$$

mutually invese, ciclusion revesing bjections
For $y \leq x, I(y)=\{f \in \mathbb{K}[x] \mid f(y)=0 \quad \forall y \in Y\}$.
In partucuior :

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { maxenail ideial } \\
m \Delta \mathbb{k}[x]
\end{array} \underset{\sim}{\sim} \quad V\left(M_{x}\right)=\{x\}\right. \\
& M_{x}=\operatorname{kerev} v_{x} \longleftrightarrow x \\
& e v_{x}: \mid k[x] \rightarrow \|_{k} \\
& \text { "evaluation al } x \text { " } \\
& \text { In fact, that this map } \\
& \text { is a bijectoin is the } \\
& \text { messicing axion for "affive savit"" }
\end{aligned}
$$

- $Q: X \rightarrow Y$ naphesin of affere varicties

A function ruch that $Q^{*}: \operatorname{Map}(Y, \mid k) \rightarrow \operatorname{Map}(x, \mid k)$ takes $\mathbb{K}[y]$ into $\mathbb{K}[x]$.

$$
f \mapsto f \circ \varphi
$$

Antoraticilly cts for $Z \cdot T_{0}$
$\varphi^{*}: \mathbb{K}[y] \rightarrow \mathbb{K}[x]$
You can recover $\varphi$ from $Q^{*}$
(9) $\mathrm{ev}_{x}: \mathbb{K}[x] \rightarrow \mathbb{K}$
lndeed, gueven aly $\theta: \mathbb{K}[Y] \rightarrow \mathbb{K}[x]$, alg. hani, is the conophui of There's a curquie $\varphi: X \rightarrow Y$ whth $\varphi^{*}=\theta$. $\operatorname{lin}_{x}:\{x\} \longrightarrow X$ "riccusion of pant" $x \in X$ for $x \in X$, what', $\varphi(x) \in Y$ ?

$$
e v_{x} \circ \theta: \mathbb{K}[4] \rightarrow \mathbb{K}
$$

Ker ev, $\circ \theta=M_{y}$ for $!y \in Y$

$$
\begin{aligned}
& i \dot{n}_{\varphi(x)}=\varphi_{0} \dot{n}_{x} \\
& e v_{\varphi(k)}=e v_{x} \circ \mathscr{P}^{*} \theta
\end{aligned}
$$

ker $e_{y}$ that $y$ is $\varphi(x)$.

