Alweys algebras mean 1/k-algebras for some field 1/k, unally 1/k= C: Ch. O Why Lie algebras? Lie algebras (C Main topic : finite-dimeirional serviruple Example Let Abe any acroaitie algebra A Lie algoba is a vectorspace of plus a bilinear map [·,·]: o] x o] → o] Define [x,y] = xy-yx. satsfying [2rry] = -[y,x] "commutator" This makes A the a Lie algebra ()(anti-symmetry) [x,x]=0 ¥xeoj Anti-symmety Jacobi? $\begin{array}{c} (2) (Jocobi \ (deitly)) \\ [x, [y,z]] + [y, [z, x]] + [z, [x,y]] = 0 \\ \forall x, y, z \in \sigma \end{array}$ = [x, yz] = [x, y]z + y[x, z]• [x, [y,z]] = [x,y]z] + [y[x,z]]Song's that $D_x: OJ \rightarrow OJ$, $a \mapsto [x, a]$ is a demahor of Lie algebra OJ. The latter rewriter to give Jacki. Say, mat D: A→A, a→ [x,a] is a derivation of associalgebre A (Leibniz/porduct rule)

For example, take
$$A = M_n(k)$$
 (nxn matrices user natrix mult.)
Then the above construction turning A its a Lie algebra produces the
Lie algebra $\mathcal{O}_n(k)$, the general linear Lie algebra.

• Nulls fellenot
$$\geq$$
 Note $V(f) = V(f^2) = \dots = \sum V(I) = V(JI)$
 $\begin{cases} naducid robiol \\ I \subseteq |k[X] \rangle \xrightarrow{V} \\ I \end{cases} \begin{cases} closed sets in X \\ unt Z.T. \rangle \\ |k[X] \\ I \end{cases}$ is reduced
mutually investe, inclusion revealing bijecteurs \therefore
For $Y \subseteq X$, $I(Y) = \{f \in |k[X] | f(g) = 0 \ \forall g \in Y \}$.
In particular :
 $\begin{cases} maximula lik[X] \\ M \leq |k[X] \end{cases} \xrightarrow{V} Y(M_X) = \{x\} \\ M_X = her \in V_X \\ eV_X : |k[X] \rightarrow |k \\ "evaluation al X" \end{cases} \xrightarrow{V} To fact, that this map is a bijecteur in the musicing axion for "affine rang".$

•
$$Q: X \rightarrow Y$$
 morphusin of affine variates
A function such that $Q^* : Map(Y, |k) \rightarrow Map(X, |k)$
f $\mapsto f \circ Q$
faker $|k[Y]$ into $|k[X]$.
Automorphishing cts for Z. To $Q^*: |k[Y] \rightarrow |k[X]$
Automorphishing cts for Z. To $Q^*: |k[Y] \rightarrow |k[X]$
Automorphishing q Q
You can recover Q from Q^*
Now can recover Q from Q^*
Indeed, given any $Q: |k[Y] \rightarrow |k[X]$, $alg how;$ is the convopluse of
there's a unque $Q: X \rightarrow Y$ with $Q^* = Q$.
For $x \in X$, $albert's Q(x) \in Y$?
 $ev_x \circ Q : |k[Y] \rightarrow |k$
 $ke ev_x \circ Q = My$ for $!y \in Y$
 $max: ideal = My$ for $!y \in Y$
 $max: ideal = My$ for $!y \in Y$
 $ke ev_x \circ Q = My$ for $!y \in Y$
 $max: ideal = My$ for $!y \in Y$