Outhre clarrificaiton of semisuple algebraic groups over $\mathbb{K}=\mathbb{K}$, any characteriti:.
connected alg. group G with 10 conneneted closed Over $\mathbb{K}=\mathbb{C}, \quad \longrightarrow$ nonnal solvable subgroys
G is semuiple $\Leftrightarrow O$ is senirsibe, so there's a voot rytem $R C E$ in the bachground. The classificition of G need move dato than that, eg $S L_{2}(\mathbb{C}), P S L_{2}(\mathbb{C})$ Addicional data!!

Let $R \subset E$ be a oot rottem, $\Delta=\left\{\alpha_{1,-}, \alpha_{l}\right\}$ a base.

$$
\begin{aligned}
& Q \leq p \\
& \text { roof. weigit. } \\
& \text { - }\left(\omega_{i}, \alpha_{\dot{\phi}}^{v}\right)=\delta_{i j} \\
& \text { - } \alpha_{i}=\sum_{j=1}^{\infty} c_{i j} \omega_{j} \quad c_{j}=\left(\alpha_{i,} \alpha_{j}^{v}\right) \\
& \text { Carton uteges }
\end{aligned}
$$

$\Longrightarrow P / Q$ fuite Abehai grosp of order $|P / Q|=\operatorname{det} C$ Could detennive exactly by finding elenertary diviois of C...

This group $P(Q$ is the fuddaneatal groys of the coot syten An womuphi $f:(R C E) \xrightarrow{\sim}\left(R^{\prime} C E^{\prime}\right)$ of root syteus take Q to Q^{\prime}, P to P^{\prime}, so udivies an \cong of fuddenetal
goop.
Theorem There's a bijection

Eramples
(1) $\mathrm{se}_{4}(\mathbb{C})\left(\begin{array}{|ccc}3\end{array}\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right) \quad \operatorname{det} C=4\right.$
$S L_{4}(\mathbb{C}) \quad \Gamma=P / Q \quad$ suidy conrected

$$
Z\left(S L_{4}(\mathbb{C})\right) \cong C_{4}
$$

$\mathrm{SL}_{4}(\mathbb{C}) /\langle \pm I\rangle$
(2) $\mathrm{So}_{8}(\mathbb{C}) \mathrm{DPi}_{4}$ (C) ${ }^{2}$

$$
\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & 0 & -1 \\
0 & 0 & 2 & 0 \\
0 & -1 & 0 & 2
\end{array}\right) \quad \operatorname{det} C=4 \quad P / Q \cong C_{2} \times C_{2}
$$

$$
\begin{equation*}
\operatorname{Out}\left(\operatorname{Spui}_{8}(\mathbb{C})\right) \cong S_{3} \tag{1}
\end{equation*}
$$

$$
P / Q \cong C_{2} \times C_{2}
$$

symative of Dykui dogaii
$\mathrm{PSO}_{8}(\mathbb{C}) \quad \tau, \tau^{3}=1$ traility autruophi of Spis (\mathbb{C})

The forward nas in this clasificionton theonem.
Take G, semumile algebani grop.
Picle T, a naxmal tom, $T \cong \mathbb{G}_{n} \times \ldots \times \mathbb{G}_{n}$
Let $o g=L(G), \quad z=L(T)$. Comider adjoit achi of Ton og. Get decayorini

If over \mathbb{C}, Z is a marnid

$$
\sigma=Z \oplus \bigoplus_{\alpha \in R} g_{\alpha}
$$

toral subalgchen of 3 , $X(T) \hookrightarrow Z^{*}$, this is Cortandecm:!
where for $\lambda \in X(T)=\operatorname{Hon}\left(T, \mathbb{G}_{n}\right)$
free Abehai grous $\approx 2^{e}$ charater groys of T
we unte $\left.\}_{\lambda}=\{x \in 0\} \mid(A d t)(x)=\lambda(t) x \quad \forall t \in T\right\}$
and $\hat{R}=\left\{0 \neq \alpha \in X(T) \mid \circlearrowleft_{\alpha} \neq 0\right\}$

So rew we hare $R \subset \underset{\hat{E}}{X_{0}}(T)$, free Abehai gove in Lie algcbas, had $R \subset{\hat{Z^{*}}}^{*}$, couplex vectorspace

Now $R C E$, where $E=\mathbb{R} \otimes X(T)$.
Want bo nake E its a Euchedein space so that thim is a not saplen.
Defue $\omega=$

$$
N_{G}(T) / T
$$

- This in a funte groop! (tact natwally on $X(T)$, heree, on E by \mathbb{R}-lueai autos.
Picle a W-nvaraict nier parduct on E.
Show that (RCE) is abstrat not syten, and W is in Weyl grous.

Fually we need $\Gamma \leq P / Q$, subgive of findanetal groy of thi root systen. That's jut $X(T) / Q$

This ther is the map i the theoren!
What about the other duvictoin? Let's start over \mathbb{C}.
Take $R C E, \Gamma \leqslant P / Q$, wort to courtuct coneipanding grop G.

- Pacle bare $D=\left\{\alpha_{1}, \alpha_{e}\right\}$, herce, Cartar natior $\left.C, 0\right]=g(C)$, tranguarar decaysestion $g=n^{-} \oplus Z \oplus n^{+}$.
- Plcle $\lambda \in P^{+}$so $P(\lambda) / Q=\Gamma$, let $V=L(\lambda)$ for short.
$P(\lambda)=$ set of wegint of $f \cdot d \cdot$ inedeuble $L(\lambda)$ of $h / \omega \lambda$ $Q \subseteq P(\lambda) \subset P$
- Then exponentate of is the reprecutation $\rho: g \rightarrow o l(V)$.

Set $x_{i}(t)=\exp \left(\rho\left(t_{e}\right)\right), y_{i}(t)=\exp \left(\rho\left(t f_{i}\right)\right)$
Then $G=\left\langle x_{i}(t), y_{i}(t) \mid t \in \mathbb{C}, i=1, \ldots l\right\rangle\langle\sigma \alpha(v)$ \backslash connected algchave grove / \mathbb{C}
If tuns out this is semiople alg. group realniry $(R<E), \Gamma$.

Lots of work is seeded to prove all this!! What about other folds?

In geneal, seed Checallly construction of Cheralley grous
Pock Cherally basis for og.

$$
\left\{e_{\alpha}^{\prime} \mid \alpha \in R\right\} \cup\left\{h_{1}, \ldots, h_{e}\right\}
$$

$$
\text { let } f_{\alpha}=e_{-\alpha} \text { for short, } L_{\alpha}=\left[e_{\alpha}, f_{\alpha}\right]
$$

ther $\left\langle e_{\alpha_{1}} h_{\alpha}, f_{\alpha}\right\rangle^{\prime}$; ay $s l_{2}$-tuder wed bepore
You can pich this so all Lie alpebon stucture courtaib are is \mathbb{Z}.

Assume $\Gamma=P / Q$, ie just coustruct sujds connected G. (univeral Cherallly grous)
Let $x_{\alpha}(t)=\exp \left(\rho\left(\operatorname{te}_{\alpha}\right)\right)$
Then $G=\left\langle x_{\alpha}(t) \mid \alpha \in R, t \in \mathbb{C}\right\rangle$ and the following relatois hold:
(1) $x_{\alpha}(t) x_{\alpha}\left(t^{\prime}\right)=x_{\alpha}\left(t+t^{\prime}\right)$
(2)

$$
\begin{aligned}
& \begin{array}{l}
\left.\left(c_{i \ddot{j},} t^{i}\left(t^{\prime}\right)^{j}\right)\right) \\
\begin{array}{l}
\text { constoutit deperduy on } \\
i j, \alpha, \beta \text {, order o } \vec{\pi},
\end{array},
\end{array} \\
& \text { sygis in Cherally, bain } \\
& c_{i j} \in \mathbb{Z}
\end{aligned}
$$

(3) $G_{\alpha}(t) x_{\alpha}\left(t^{\prime}\right) \sigma_{\alpha}(t)^{-1}=x_{-\alpha}\left(-t^{2} t^{\prime}\right)$

$$
t \in \mathbb{C}^{x}, t^{\prime} \in \mathbb{C}
$$

where $\sigma_{\alpha}(t)=x_{\alpha}(t) x_{-\alpha}\left(-t^{-1}\right) x_{\alpha}(t) \in G$
(4)

$$
\begin{aligned}
& \gamma_{\alpha}(t) \gamma_{\alpha}\left(t^{\prime}\right)=\gamma_{\alpha}\left(t t^{\prime}\right) \\
& t_{1} t^{\prime} \in \mathbb{C}^{x}
\end{aligned}
$$

Get grue $G(\mid K)$ aysfoid |k Univeid Cherally group ooe $1 k$
where $\gamma_{\alpha}(t)=\sigma_{\alpha}(t) \sigma_{\alpha}(-1)$ $G(q)$ (almort) fuite saple gors
Mirace: There que a complete set of relators for grop G. The relatoin neke sesse with \mathbb{C} replaced by \mathbb{K} fanite goops (indeed, ory feid, not aven algebracially closed)

