Working over
$$\mathbb{C}$$
 for now on!
(1) $\varphi: G \rightarrow H$ $L(\ker Q) = \ker d\varphi$
(2) $H_1K \leq G$ $L(H_1K) = L(H_1) \cap L(K)$
(3) $f: G \rightarrow GL(V)$ representations
 $dg: g \rightarrow g \cdot (V)$ $\int_{g, V = f(g)(V)} g \cdot V = (dg)(K)(V)$
 $f(W \leq V)$ any subspace, then $L(N_G(W)) = N_g(W)$
($f(W) \leq V$ any subspace, then $L(N_G(W)) = N_g(W)$
($f(W) \leq V$ any subspace, then $L(N_G(W)) = N_g(W)$
($f(W) \leq V$ any subspace, then $L(N_G(W)) = N_g(W)$
($f(W) \leq V$ any subspace, then $L(N_G(W)) = N_g(W)$
($f(W) \leq V$ any subspace $f(G)$ is connected, then W is G -stable
(f_1, g_1 Some rotion of "submodule" $N_g(W) = G \iff N_g(W) = \sigma_1$
Hence V is an credinitle representation of G
($f(W) = V$ is an credinitle of σ_1 .

$$\frac{\text{Theorem}}{\text{By an algebraic subalgebra of } \sigma_{J} = L(G), \text{ mean a subalgebra h such
By an algebraic subalgebra of $\sigma_{J} = L(G), \text{ mean a subalgebra h such
that $h = L(H)$ for some closed connected $H \leq G$.
There's an inclusion pressing bijection
 $\int clascol connected \text{ rubgran} \longrightarrow \int algebraic subalgebras} \sigma_{G} \sigma$
 $H \longrightarrow h = L(H)$
This satisfies $L(H\cap K) = L(H) \cap L(K)$.
Moreous, $H \leq G \iff h \leq \sigma_{J}$
 $round$
 $round$$$$

Proof The map is only by deputition.
To see it 1-1, suppose
$$H_1K \leq G$$
 saturity $L(H) = L(K)$.
 $L(H \cap K) = L(H) \cap L(K) = L(H) = L(K)$
Shows derin $(H \cap K)^\circ = deri H = deri K$.
As $H = K$ are invedicible and $H \cap K$ is closed relived, this inplicit
 $H \cap K = H = K$ /
Frailly, need to show $H \leq G \iff h \leq \Im$.
Frailly, need to show $H \leq G \iff h \leq \Im$.
Look at Adjout action q G on \Im , adjait actual of σ on \Im .
by property (3), G acting ria Ad and σ acting ria ad leave the
same subspace invariant, so $h \leq \sigma$ is equalent to scarring that
 h is shelle under Ad g $H \in G$.

So we woul to show
$$H \leq G$$
 closed ronnected that
 $(\operatorname{Intg})(H) \leq H \iff (\operatorname{Adg})(h) \leq \lambda$
 $\forall g \in G$
Let $K = g Hg^{-1}$, $k = L(K)$
 $\operatorname{Intg}_{H} : H \xrightarrow{\sim} K$
 $\operatorname{Adg}_{h} : \lambda \xrightarrow{\sim} k$
We see that $H = K \iff \lambda = \lambda$ thanks to lettice
comparedness already critication

This is the fundamental privile of Lie Theory !!! These strong results over C allow groups to be studied via their Lie algebra [------Simple algebraic groups () fid. simple Liè algebras (bie algebra mits no please other than O, J. alg.go. with no closed <u>connected</u> normal subgroups other than I and G De're gaing to clarsy; there! Hill tim out from that for that were syste Liè algebra of comes from a G. 3G s.t. L(G) = 0]"almost" classiportion of scuple alg.gps. Lie algebra Stratt both have save $SL(C) \not\cong PSL(C)$

suple of gp. f.d. > representation of of One can study representations δ ⇒ subnudula Submodule \subseteq We'll study Treve! Those every f.d. representer Every fid. reprop of comes of J is completely reduble from a representation of G (beyl's Theorem) (soutable clearce q G) + classify medicible ones.

all reps. are c.r. > Establish Weyl's Theoren for slaCC) 3 algebr $SU_n \subset SL_n(\mathbb{C})$ Flag variety, flags i Cⁿ Maxmal carpact subgrup. $(f_{a})^{(1)} (f_{a})^{(1)} (f_{a})^{(1)} = (f_{a})^{(1)} (f_{a}$ deve Marchke's Theorem preps come fran suitable line builles ar Gre L Z ... (64 geb $H^{\circ}(G_{B}, \mathcal{I}_{\lambda})$ geometry aralysis