The Poincaré–Birkhoff–Witt Theorem (PBW)

Let \mathfrak{g} be a Lie algebra, $U(\mathfrak{g}) = T(\mathfrak{g})$ its universal enveloping algebra.

The canonical map $i: \mathfrak{g} \to U(\mathfrak{g})$ is injective (so we can identify \mathfrak{g} with a subspace of $U(\mathfrak{g})$). Moreover, if $\{x_i : i \in I\}$ is a basis for \mathfrak{g} and some total order on I, then

$$\left\{ x_{i_1} \cdots x_{i_n} \mid n \geq 0, i_1, \ldots, i_n \in I, i_1 \leq \cdots \leq i_n \right\}$$

is a basis for $U(\mathfrak{g})$.

Usually, \mathfrak{g} is f.d. with basis x_1, \ldots, x_n then PBW basis is

$$\left\{ x_1^{m_1} x_2^{m_2} \cdots x_n^{m_n} \mid m_1, \ldots, m_n \geq 0 \right\}.$$
Comments on proof

You probably saw the first Weyl algebra $A = \frac{\mathbb{C}[x,y]}{\langle xy - yx - 1 \rangle}$

This has basis $y^j x^i (i,j \geq 0)$.

Usual proof
- $y^j x^i (i,j \geq 0)$ span A
- Define an action of A on $\mathbb{C}[y]$ so y acts as mult. x acts as $\frac{d}{dy}$
- Check relations: $\frac{d}{dy} (yf) = y \frac{df}{dy} + f$
- Then use this action to prove uni. independence, act on $y^k \in \mathbb{C}[y]$.

In fact, A is a filtered deformation of $\mathbb{C}[x,y]$.

Note $T = \mathbb{C}[x,y]$ is a graded algebra (x,y in degree 1)

But $I = \langle xy - yx - 1 \rangle$ is not homogeneous ... A is merely filtered.

Let $A \leq \bigoplus_{d=0}^{n} \text{Im} (T_d)$ Then:
For a filtered algebra, its associated graded algebra \(\text{gr} A = \bigoplus_{d \geq 0} (\text{gr} A)_d \)

where \((\text{gr} A)_d := \frac{A \leq d}{A < d} \).

For \(x \in A \leq n \), let \(\text{gr}_n x = x + A \leq n \in (\text{gr} A)_n \).

Then \(\text{gr} A \) is a graded algebra with \((\text{gr}_n x) \cdot (\text{gr}_m y) = \text{gr}_{n+m} (xy) \).

For our \(A \), the first Weyl algebra, \((\text{gr} A)_n\) has basis \(\text{gr}_n (y^j x^i) \) \((i+j = n)\).

Also \(\text{gr}_1 x, \text{gr}_1 y \) commute in \(\text{gr} A \).

\(\text{gr}_2 (xy) = \text{gr}_2 (yx) \) So: \([x, y] \mapsto \text{gr} A \), algebra homomorphism.
Story for \(U(\mathfrak{g}) \) is similar!

To prove PBW theorem

Unpleasant step!!!

Inductive: and degree.

The ordered monomials span \(U(\mathfrak{g}) \)

- Make \(S(\mathfrak{g}) \) into a left \(U(\mathfrak{g}) \)-module so

\[x_i \cdot x_j \cdots x_{j_n} \equiv x_i x_j \cdots x_{j_n} \quad \text{(modulo lower degree terms)} \]

and \(x_i \cdot x_j \cdots x_{j_n} = x_i x_j \cdots x_{j_n} \) if \(i \leq j \cdots j_n \)

(Unique way to do this)

- Use this action to show \(\mathfrak{g} \)-independence (action 1)

There's an axiomatization of this type of argument — Bergman's diamond key

In fact, \(U(\mathfrak{g}) \) is a filtered deformation of \(S(\mathfrak{g}) \).

Of course, \(U(\mathfrak{g}) \) is a filtered algebra as a quotient of \(T(\mathfrak{g}) \)

\[U(\mathfrak{g}) \cong \lim_{\leftarrow n} \bigoplus_{d=0}^{\infty} T^d(\mathfrak{g}) \]
PBW \Rightarrow (\text{gr } U(g))_n \text{ has basis } \text{gr}_n(x_{c_1} \cdots x_{c_n}) \\
\text{Also } \text{gr } U(g) \text{ is commutative } (\text{gr}_1 x_{c_1}) \cdots (\text{gr}_1 x_{c_n})

[\text{gr}_1 x, \text{gr}_1 y] = \text{gr}_2 (xy - yx) = \text{gr}_2 ([x, y]) = 0

So \xymatrix{ S(g) & & \text{gr } U(g) \\ x \ar@{|->}[r] & \text{gr}_1 x \\ \text{gr} \ar@{|->}[u] & & U(g) \ar@{|->}[l]}

\text{gr} \xrightarrow{\text{U}(g)} U(g)
Last time: three basic examples of Hopf algebra Δ (consult) Σ (consult) antipode (5)

1. $\mathfrak{g} \mathfrak{l} (G)$, G a finite group
 \begin{align*}
 \Delta(g) &= g \otimes g \quad g \in G \\
 \varepsilon(g) &= 1 \quad g \in G \\
 S(g) &= g^{-1} \quad g \in G
 \end{align*}
 "group-like element"

2. $\mathfrak{g} \mathfrak{u} [G]$, G algebraic group
 \begin{align*}
 \Delta &= m^* \\
 \Sigma &= e \mathfrak{u} e \\
 S &= \iota^*
 \end{align*}

3. $\mathfrak{u}(g)$, g a Lie algebra
 \begin{align*}
 \Delta(x) &= x \otimes 1 + 1 \otimes x \\
 \Sigma(x) &= 0 \\
 S(x) &= -x
 \end{align*}
 Need to use uni. prop. of $\mathfrak{u}(g)$ to see that they extend appropriately.

"$\mathfrak{u}(g)$ is to $\mathfrak{g} \mathfrak{l}$ as $\mathfrak{k} \mathfrak{g} \mathfrak{l}$ is to G"

(Finite group G)

$\text{Rep}(\mathfrak{g}) = \mathfrak{u}(g) \text{- mod} \ 	ext{fd}$

\uparrow

f.d. representation of \mathfrak{g}

$\text{Rep}(G) = \text{comod} \cdot \mathfrak{k} \mathfrak{g} \mathfrak{l} \mathfrak{g} \mathfrak{l} \text{ fd}$

\uparrow

f.d. representation of G

$\text{Rep}(G) = \mathfrak{k} \mathfrak{g} \mathfrak{l} \text{- mod} \ 	ext{fd}$

\uparrow

All three "cats" are symmetric tensor cats.
Why is Hopf algebra structure important?

A cocommutative Hopf algebra $\Delta: A \rightarrow A \otimes A$

$\varepsilon: A \rightarrow k$

$s: A \rightarrow A$

Then A-mod is a symmetric tensor category

$V \otimes W = V \otimes W$ is an $A \otimes A$-module

Ik

$(a \otimes b)(v \otimes w) = av \otimes bw$

So it is an A-module via $\Delta: A \rightarrow A \otimes A$

$V^* = \text{Hom}_k (V, \text{Ik})$, linear dual

$(a \cdot f)(v) = f(S(a)v)$

$A \otimes V^*$

Trivial module Ik has action defined by $\alpha \cdot 1_{\text{Ik}} = \Sigma(a) \cdot 1_{\text{Ik}}$.
If A is a Hopf algebra,

A^*, linear dual, is always an algebra

$$A^* \otimes A^* \rightarrow (A \otimes A)^* \rightarrow A^*$$

But A^* is not necessarily a coalgebra (hence, Hopf algebra) in a natural way.

$$A^* \rightarrow (A \otimes A)^* \leftarrow A^* \otimes A^*$$

In general, the map of this map, dual or multiplication A, needn't be in subspace $A^* \otimes A^* \rightarrow (A \otimes A)^*$.

If A is f.d., no problems, and A^* is again a Hopf algebra via this construction.

$\mathbb{C} G$, G finite group.

$$\text{Rep}(G) \equiv \text{Rep}(G)$$

$\mathbb{C}G$-modules \equiv right $\mathbb{C}[G]$-comodules
For G connected algebraic group.

Then $\mathbb{k}[G]^*$ is an algebra but "too big" to be a coalgebra / Hopf algebra

Now you consider

$$\text{Dist}(G) = \{ \Theta \in \mathbb{k}[G]^* \mid \Theta(M_e^{n+1}) = 0 \text{ for } n \gg 0 \}$$

The algebra of distributions of G

In a subalgebra, ever filtered with $\text{Dist}(G) \leq \mathcal{U} = (\mathbb{k}[G]/M_e^{n+1})^*$

Every a Hopf algebra with counit dual to multi on $\mathbb{k}[G]$.

In char. 0, turns out that $\text{Dist}(G) \simeq \mathcal{U}(\mathfrak{g})$ as Hopf algebras.
\[\text{Der}(\text{Lie}(G), \text{Lie}(e)) = (\mathcal{M}_e/M_e^2)^* \subseteq \text{Der}(G) \]

Get Lie alg. hom. \[\text{Der}(\text{Lie}(G), \text{Lie}(e)) \rightarrow \text{Der}(G) \text{ from this} \]

\[\mathcal{U}(G) \cong \text{requins char. 0} \]