$$
\underline{\operatorname{Rep}\left(s l_{2}\right)} \equiv U(\sigma)-\bmod d_{f \cdot d} .
$$

Today $\sigma=s l_{2}(\mathbb{C}) \quad e=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \quad h=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad f=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$

$$
[e, f]=h \quad[h, e]=2 e \quad[h, f]=-2 f
$$

If v is a non-zes vector u some g-nodule V such that $h v=\lambda v$ $(\lambda \in \mathbb{C})$
then

$$
\left.\begin{array}{l}
\text { hen } \begin{array}{rl}
h(e v) & =(\lambda+2) e v \\
\nmid & (f v)
\end{array}=(\lambda-2) f v
\end{array}\right\}
$$

$v i$ an eqemector for h of eggevaluie λ v is a weight vector of weight λ.

If $O \neq V$ is any f.d. of-nodule, yar can always fud a (non-zew) weight vector $v \in V$ of weight $\lambda \in \mathbb{C}$.
V, $e v, e^{2} v, \ldots$ Can't yo forever as V is f.d.

$$
\begin{array}{lll}
\lambda & \lambda+2 & \lambda+4
\end{array}
$$

Evertually yar get to a wagut vector kelled by e

$$
\left.\begin{array}{c}
O \neq v \in V \\
h v=\lambda v \\
e v=0
\end{array}\right\}
$$

We're gaig to show ary f.d. Ireid. reprerectation is detenued curquily up to sonwpini by cts higheit werght \qquad the weight of a hugheit wit vector.
This weight is always $\lambda=n \in \mathbb{N}$

"hoghiet weiglit n " $\operatorname{din} L(n)=n+1$.

Exampes
\mathbb{C}
hugheit weight O
$L(0)$
trinal nodule

$$
\begin{equation*}
V=\mathbb{C}^{2} \tag{1}
\end{equation*}
$$

natual representatoi wt 1 est-1 higheit weight I

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$S^{n} V$
$L(n)$, dimeirion $(n+1)$
nth symmetic power

Proof that irsed. Any weiglit recfor geresates

Lemma If $v \in V$ is ary vector is a g-module uth $e V=0$,
Then $e f^{n+1} v=(n+1) f^{n}(h-n) v \quad(n \in \mathbb{N})$.
Pooor $e f^{n+1} v=\left[e, f^{n+1}\right] v=\sum_{i=0}^{n} f^{i}[e f] f^{n-i} v$

$$
\begin{aligned}
& \text { Conoor ef } \begin{aligned}
\text { convator in } u(g) & =\sum_{i=0}^{n} f^{i} h f^{n-i} v=\sum_{i=0}^{n} f^{i} f^{n-i}(h-2 n+2 i) v \\
& =f^{n} \cdot(n+1)(h-n) v
\end{aligned}
\end{aligned}
$$

Corpllary (k vis a vector kullid by e then

$$
e^{n+1} f^{n+1} v=(n+1)!h(h-1) \ldots(h-n) v
$$

Proof $e^{\prime \prime}\left(e f^{n+1} v\right)=(n+1) e^{n} f^{n}(h-n) v$ then noduct

Now take $\lambda \in \mathbb{C}$.
Let $b^{z}=\mathbb{C} h \oplus \mathbb{C} e<\sigma \quad\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$
This is a solvable sulualgeber, $b \longrightarrow \mathbb{C} h$.
Let \mathbb{C}_{λ} be $1-d$. ned b-nodule on which h acts as λ e act as O.
As $b<o r, U(b)<U(0) \cdots$ form the
Verna nodule

$$
M(\lambda)=U(0) \underset{U(3)}{\otimes} \mathbb{C}_{\lambda}
$$

As $U(g)$ has bairn $f^{i} h^{j} e^{k}(i j, k \geq 0)$ by Pow theorem, of is free as a nglit $U(b)$-nodule wt th bais $f^{i}(i \geqslant 0)$. So $m(\lambda)$ has bairn $f^{i} \otimes \mid \quad(i \geqslant 0) \ldots$ denote there by $f^{i} v_{+}$

Note alno that $f^{i} v_{+}$is a weight veetor of weight $\lambda-2 i$.
Theoven) for $\lambda \in \mathbb{C}-\mathbb{N}, \quad M(\lambda)$ is an inediiste og-nodule. (f $\lambda=n \in \mathbb{N}, \quad M(n)$ ha a uneque subnodule somaplui to $M(-n-2)$, and unquie quoleat $L(n):=m(n) / M(-n-2)$ which is a f.d.irsedimitle reprecatatoin of lughest wergit n, denercion $n+1$. Every f.d. innd. veprectatation of of is nomiphic to $L(n)$ for ! $n \in \mathbb{N}$. Prof Take $\lambda \in \mathbb{C}-\mathbb{N}$.

Take $0 \neq v \in M(\lambda), v=\sum_{i \in \mathbb{N}} c_{i} f^{i} v_{+}$
Chave brggert i so $c_{c} \neq 0$. Candis $e^{i} v$.

$$
e f^{n+1} v_{+}=(n+1) \underbrace{(\lambda-n)}_{\neq 0} f^{n} v_{+} \text {by lemna }
$$

It follows that $e^{i} v$ is a son-zers multhple ar v_{+}, cychic vector. Hence v genates and $M(\lambda)$ is imed.
But if $\lambda=n \in \mathbb{N}$, then $f^{n+1} v_{+}$is kelled bye.
So $\left\langle f_{t}^{n+1} v_{t}, f^{n+2} v_{+}, \ldots\right\rangle$ spar a submodule of $M(n)$.
wergit $n-2(n+1)=-n-2 \ldots$ copy of $M(-n-2)$, irreduicle.
The quotwat of $M(\lambda)$ by thie salmodule ha bavis

$$
\overline{v_{+}}, \overline{f v_{+}}, \ldots, \overline{f^{n} v_{+}} \text {, dis } n+1 \ldots \text { isreduicile }
$$

Now tike any f-d. ined. og-nodule L As above, faid $O \neq v$ highect wergit vector of weghlt $\lambda \in \mathbb{C}$. $h v=\lambda v, \quad e v=0$

$$
\therefore \lambda=n \in \mathbb{N}
$$

$$
\text { and } L \cong L(n)
$$

Shows there, non-reso $M(\lambda) \longrightarrow L \quad$ g-nodute hom. So L is a f-d quotect $f^{i} v_{+} \longmapsto f^{i} v$ of $M(\lambda)$

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{Hom}_{3}\left(\mathbb{E}_{\lambda}, \operatorname{res}_{u(b)}^{u(s)} L\right) \neq 0 \\
1 \nmid v
\end{array} \\
& \text { SII } \\
& \operatorname{Hom}_{g}(\underbrace{\left(U(o g) \otimes \mathbb{C}_{x}\right.}_{m^{\prime}(x)}, L)
\end{aligned}
$$

Theorem 2 Any fod rep. of og is coupletery reduble.
Prof Sufficie to show $E x t_{\text {of }}^{\prime}(\underset{a}{L}(a), L(b))$ for $a, b \in \mathbb{N}$.
Case one $a>b$
The gereralured a-eqaunpaie of h on V is $l-D$

L(a)
By unveral popesty of $M(a)$, get of-module hom.
D P(a) $\rightarrow V$ $(e v=0)$. This guves sputtin of π.
Case two $a<b \quad \operatorname{Extg}(L(a), L(b)) \cong \operatorname{Exx}_{y}^{\prime}\left(L_{\text {SII }}^{\prime}(b)^{*}, L(a)^{*}\right)$ Done.

Case three $a=b$
$O \rightarrow L(a) \rightarrow V \rightarrow L(a) \rightarrow 0$
Hrgheet usengit a -.. genesalnid a-egeerpace for $h \rightarrow V$ is $2 D$.
The arguneat is care one wurks fine if h is dragonaliadle on this egeupace. We don't know This... whes not a Jordan block $\left(\begin{array}{ll}a & 1 \\ 0 & a\end{array}\right)$?.

Take ary $O \neq V$ in this genesahied egarpace.

$$
e v=0=f^{a+1} v
$$

$\therefore e^{a+1} f^{a+1} v=(a+1)!h(h-1) \cdots(h-a) v$ by Conollary.

Showr mia. poly of h actigg on this eegerpace dindes $x(x-1) \cdots(x-a)$ This is a paduct of distuict heea factor, herce, h is udeed chagonaliable

