$$\frac{\operatorname{Rep}(rd_{2})}{\operatorname{Today} \sigma_{1}^{2} = sl_{2}(\mathbb{C}) \qquad e^{2}(\sigma_{0}) \qquad h^{2}(\sigma_{0}) \qquad h^{2}(\sigma_{0}) \qquad h^{2}(\sigma_{0}) \qquad f^{2}(\sigma_{0}) \qquad f^{2}(\sigma_{0$$

We're going to show any f.d. med representation is determined carquiely
up to isomorphic by the highest weight — the weight of a highest week.
This weight is always
$$\lambda = n \in M$$

 $L(n)$ $(n \in M)$ "highest weight n"
 $dim L(n) = n + 1$.

Lemma If
$$v \in V$$
 is any vector is a g-module with $ev = 0$,
then $e \in f^{n+1}v = (n+1)$ $f^n(h-n)v$ $(n \in N)$.
then $e \in f^{n+1}v = [e_0 \notin f^{n+1}]v = \sum_{i=0}^{n} \int f^i [e \notin] \int f^{n-i}v$
commutation in $U(q) = \sum_{i=0}^{n} \int f^i \int f^{n-i}(h-2n+2i)v$
 $h \notin = \oint (h-2) = \int f^n (h+1)(h-n)v$
 $e^{n+1} \notin f^{n+1}v = (n+1) \int h(h-1)\cdots (h-n)v$
Proof $e^n(e \notin f^{n+1}v) = (n+1) e^n \int f^n(h-n)v$ then induct

Now take
$$\lambda \in \mathbb{C}$$
.
Let $\mathcal{D} = \mathbb{C}h \oplus \mathbb{C}e < \sigma_{\mathcal{I}}$ $\begin{pmatrix} \chi & \chi \\ \mathcal{O} & \chi \end{pmatrix}$
This is a solvable subalgebra, $\mathcal{D} \longrightarrow \mathbb{C}h$.
Let \mathbb{C}_{χ} be 1-d inned \mathcal{D} -module on which h ach as λ
Let \mathbb{C}_{χ} be 1-d inned \mathcal{D} -module on which h ach as λ .
As $\mathcal{D} < \sigma_{\mathcal{I}}$, $\mathcal{U}(\mathcal{B}) < \mathcal{U}(\sigma_{\mathcal{I}})$ -... form the
Verma module $M(\lambda) = \mathcal{U}(\sigma_{\mathcal{I}}) \bigotimes_{\chi} \mathbb{C}_{\chi}$
As $\mathcal{U}(\sigma_{\mathcal{I}})$ has basis $f^{i}(h^{i}e^{k})(i_{\mathcal{I}},hzo)$ by $\mathcal{P}\mathcal{D}\omega$ theorem, d is
free as a right $\mathcal{U}(b)$ -module with basis $f^{i}(izo)$. So $M(\lambda)$ has
basis $f^{i}\otimes I(izo)$... derote there by $f^{i}v_{+}$

Note also that
$$f' v_{\pm}$$
 is a weight vector of weight $\lambda - 2c$.
Theorem 1 For $\lambda \in \mathbb{C} - 1N$, $M(\lambda)$ is an irreduible of module
 $(f \lambda = n \in \mathbb{N})$, $M(n)$ has a unique submodule isomorphie to
 $M(-n-2)$, and unique quotest $L(n) := M(n)$
 $M(-n-2)$
which is a f-d-irreduible representation of highest weight n , demersion $n+1$.
Every f-d-irreduible representation of c is universite to $L(n)$ for $n \in \mathbb{N}$.
Frong f-d-irreduible $(n \in \mathbb{C} - \mathbb{N})$.
 $\frac{Proof}{Take} \lambda \in \mathbb{C} - \mathbb{N}$.
 $Take O \neq v \in M(N)$ $v = \sum_{c \in \mathbb{N}} c_c f^c v_{\pm}$.

e
$$f^{n+1}v_{+} = (n+1)(\lambda - n)f^{n}v_{+}$$
 by lemma
 $\downarrow = 0$
It follows that $e^{i}v$ is a non-zero multiple of v_{+} , cyclic vector.
Itence v genetes and $M(\lambda)$ is imed.
But if $\lambda = n \in \mathbb{N}$, then $f^{n+1}v_{+}$ is kelled by e.
So $\leq f^{n+1}v_{+}, f^{n+2}v_{+}, \dots$ Span a submodule of $M(n)$.
 p
 $v_{eight} n-2(n+1) = -n-2 \cdots copy of $M(-n-2)$, irreduide.
The quotient of $M(\lambda)$ by this submodule has basis
 $\overline{v}_{+}, \overline{f^{n}}_{+}, \dots \overline{f^{n}}v_{+}$, duri $n+1$... irreduidle $\sqrt{n}$$

Now take any find inved of module L
As above, faid
$$0 \neq v$$
 highed weight vector of weight $\lambda \in \mathbb{C}$.
 $hv: hv, ev=0$
Hom $(\mathbb{C}_{\lambda}, results) L) \neq 0$ $\therefore \lambda = n \in \mathbb{N}$
 $0 \quad 1 \mapsto v$
 SII
 $1 \mapsto v$
 $V(b)$
 $M(b)$
 $M(b)$

Theorem 2 Any fid. rep. of of is completely reducte.
Proof Sufficients show
$$\operatorname{Ext}'(L(a), L(b))$$
 for a, be N.
Case one a>b $O \to L(b) \to V \operatorname{TsL}(a) \to O$
The generalized a expansion of h on V is 1-D b-2 a-2
The generalized a expansion of h on V is 1-D b-2 a-2
To you can find ve V or weight a 2^{-6} 2^{-6}
Nexposing to $v_{+} \in L(c)$ under T.
By unweight property of M(a), get of -noclule hom. DATA $\longrightarrow V$
 $(e \vee = O)$. This gives splitting of T.
Case two $a < b$ $\operatorname{Ext}'_{0}(L(a), L(b)) \cong \operatorname{Ext}'_{0}(L(b)^{*}, L(a)^{*})$
 $\int_{0}^{N} Done$.

$$(ase three a=b \qquad \bigcirc \rightarrow L(a) \rightarrow V \rightarrow L(a) \rightarrow O$$

Take any
$$0 \neq v$$
 in this generalized eigenpace
 $ev = 0 = f v$
 $ev = 0 = f v$
 $ev = (a+1)! h(h-1) - - (h-a) v$ by Conollary.
 f
Shows min poly. of h acting on this eigenpaie divides $x(x-1) - (x-a)$
This is a product of district hear factor, here, h is indeed diagonalizable