Last teme: three lemmas
$L 1$. for $\alpha \in R, c \alpha \in R \Leftrightarrow c= \pm 1$

- Each of α is $\mid-D$
$\underline{\underline{L}}$. Can pick $e_{\alpha} \in \mathcal{Z}_{\alpha}, f \alpha^{\in-} ?_{-\alpha}$

$$
\gamma=z \oplus \bigoplus_{\alpha \in R} g_{\alpha}
$$

Cartan de conpartivi of semisinpl Lie algem
($1, \cdot$) non-degeneste uvancit form
Restuction to Z nou-degeneate

$$
\begin{aligned}
& z \longleftrightarrow Z^{*} \\
& t_{\lambda} \longleftrightarrow \lambda^{\psi}
\end{aligned}
$$ and $h_{\alpha}=\frac{2 t_{\alpha}}{\left(t_{\alpha}, t_{\alpha}\right)} \in z$

so $\left(e_{\alpha}, h_{\alpha}, f_{\alpha}\right)$ is an slotuple is of ... span subalgebra ${ }^{\circ} \jmath_{\alpha} \cong s l_{2}(\mathbb{C})$
≤ 3. For $\alpha, \beta \in R, \beta \neq \pm \alpha$, let r, q maxmial so $\beta-r \alpha, \beta+q \alpha \in R$
Then $\beta-r \alpha, \ldots \beta+i \alpha, \ldots, \beta+q \alpha$ eitive strig (all $-r \leqslant i \leqslant q$)
$\left(\beta, \alpha^{v}\right) \quad \alpha$-string though β
hence $\beta\left(h_{\alpha}\right)=r-q \in \mathbb{Z}$ and $\beta-\beta\left(h_{\alpha}\right) \alpha \in R$.
Notation: Trusport form (\because) on Z to z^{*} so $\left(\lambda_{r \mu}\right)=\left(t_{\lambda}, t_{\mu}\right) \quad \lambda_{\nu_{\mu e}} z^{*}$

- Always urite $\alpha^{v}=\frac{2 \alpha}{C \alpha, \alpha}$ for $\alpha \in R$. COROOT comesponding to α.

Definition A root system is a pair (E,R) such that T sublet of E of "root"
(1) R is finite ard spans E
(2) $k \alpha \in R$, the $c \alpha \in R \Leftrightarrow c= \pm 1$
(3) If $\alpha, \beta \in R$ then $S_{\alpha}(\beta) \in R$

Euchdain space
Real vector space witt a posidef. Symmetri bolivar form (\because)
(4) If $\alpha, \beta \in R$ then $2(\beta, \alpha) \in \mathbb{Z}$ $\left(\beta, \alpha^{v}\right) /(\alpha, \alpha)$

Shorthand $\alpha^{v}=\frac{2 \alpha}{(\alpha, \alpha)}$ for $\alpha \in R$
$S_{\alpha}: E \rightarrow E$ reflection i α^{\perp}

$$
S_{\alpha}(\lambda)=\lambda_{\lambda}-\frac{2 \psi(\lambda \alpha)}{\ell \alpha, \alpha)} \alpha
$$

corot
C, $7^{*} \begin{gathered}\text { REAL A } \\ \text { REAL }\end{gathered}$
ReAL space
We wat to show our R of rots coming from Carter decaposition is a coot system in this sense. We'ce seen (2),(3), (4) already!!

Deprilimi Gwein og $=z \oplus \underset{\alpha \in R}{\bigoplus} g_{\alpha} \quad \begin{gathered}\text { Carton deconpasitai of } \\ \text { Semisnut Le abgefica }\end{gathered}$
defue $E=\mathbb{R} R \subset Z^{*}$
(real vector space spaned by R in conplex vectorspace Z^{*})
$\underline{\text { Lemma } 4} \operatorname{dimin}_{\mathbb{R}} E=\operatorname{dim}_{\mathbb{C}} Z^{*}$, i.e. $Z^{*}=\mathbb{C} \underset{\mathbb{R}}{\otimes} E$
 So $\alpha_{l c-1} \alpha_{l}$ are h_{i}. independet over \mathbb{C}, herce, over \mathbb{R}. We a $\mathbb{C} r$-space to show $\alpha_{11} \rightarrow \alpha_{k}$ span E ar a \mathbb{R}-ripace. So take $\beta \in R$.
Wonte $\beta=\sum_{i=1}^{\infty} c_{i} \alpha_{i}$ for $c_{i} \in \mathbb{C}$, need to show each $c_{i} \in \mathbb{R}$. I $\exists\left(\beta, \alpha_{j}^{v}\right)=\sum_{i=1}^{l} c_{i}\left(\alpha_{i}, \alpha_{j}^{v}\right) \rightarrow\left(\left(\alpha_{i}, \alpha_{j}^{v}\right)\right)_{1 c_{i j} \leqslant e}$ integer matrix Invere matix has atotoind entris $\Rightarrow \operatorname{cic}_{i \in} \mathbb{Q}$ Inverble as α_{1}, α_{l} and $\alpha_{1}^{v} \ldots \alpha_{l}^{v}$ we baves for z^{*} and ($\left.\because \cdot\right)^{\prime}$ ion-deg.

Frilly we reed inner product on E.
Up to now, ally invariant non-degerate form was free (i,), not necessarily K. Now to get Euchdion space statue on E, we reed to be move cavell! Look at HW 6-2 \cdots all forms are K scaled by nom-zers scalar on each simple coronet of of.
Lemma 5 Assume that (,\because) is the Killing form possibly scaled by positive real miters on each ruple capone of o?.
The restriction of $(\cdot$,$)) to E \subset Z^{*}$ is real-valued, positive depute symmetric binièr form nabicy E its Euchdiàs space.
$\left.\begin{array}{rl}\text { Proof } R T P & (\alpha, \beta) \in \mathbb{R} \\ \text { and }(\lambda, \lambda)>0 & \forall \alpha, \beta \in R \\ & \forall 0 \neq \lambda \in E\end{array}\right\}$

WLOG (.,.) is the Killing form.
Take $\lambda_{\mu \mu \in} Z^{*}$.

$$
\begin{align*}
(\lambda, \mu) & =\left(t_{\lambda}, t_{\mu}\right)=\operatorname{tr}_{g}\left(a d t_{\lambda} \circ \operatorname{ad} t_{\mu}\right) \\
& =\sum_{\alpha \in R} \alpha\left(t_{\lambda}\right) \alpha\left(t_{\mu}\right)=\sum_{\alpha \in R}(\alpha, \lambda)\left(\alpha_{\mu}\right) \tag{t}
\end{align*}
$$

Now take $\beta \in R$.

$$
\begin{aligned}
& \quad(\beta, \beta)=\sum_{\alpha \in R}(\alpha, \beta)^{2} \text { by }(t) \\
& \therefore \frac{1}{(\beta, \beta)}=\sum_{\alpha \in R} \frac{(\alpha, \beta)^{2}}{(\beta, \beta)^{2}}=\sum_{\alpha \in R} \frac{\left(\alpha, \beta^{v}\right)^{2}}{4} \in \mathbb{Q} \\
& \therefore(\beta, \beta) \in \mathbb{Q} \quad \forall \beta \in R \\
& \therefore(\alpha, \beta)=\left(\alpha, \beta^{v}\right) \cdot \frac{(\beta, \beta)}{2} \in \mathbb{Q} \quad \forall \alpha, \beta \in \mathbb{Q}
\end{aligned}
$$

Show, (\ldots) is real-valued

Frailly for $O \neq \lambda \in E$, by (t)

$$
(x, \lambda)=\sum_{\alpha \in R} \underbrace{\alpha, \lambda}_{\in \mathbb{R}})^{2} \geqslant 0
$$

If it equal zee, $(\alpha, \lambda)=0 \quad \forall \alpha$, here, $\lambda=0$ by non-degeneney. So actually $(\lambda, \lambda)>0$, and the form is positive definite

Goal next:
(1) Classification of root systems
(2) Show any senisupi Lie abebn of is detenned up to \cong by its root system.
(3) Show every rot system cames from a semisple Lie algebr.

$$
\left\{\begin{array}{c}
\text { senisple Lié } \\
\text { algelonp }
\end{array}\right\} \approx \simeq\{\text { oot syten }\} \approx
$$

Rootsystens are sums of udecaposable noot syitems.

$$
\begin{aligned}
& \text { vide capasablp } \\
& \text { Indecaposable not systems } \longleftrightarrow \text { Cartan matreés } \longleftrightarrow \text { Dynkin diagrains } \\
& \text { 邓 } \\
& \left(\left(\alpha_{i}, \alpha_{j}^{v}\right)\right)_{\mid s_{i r j s e}} \text { for of covepal chorie } \\
& \text { |sirjsl of baris } \alpha_{r c, 1} \alpha_{l}
\end{aligned}
$$

$$
l=\operatorname{sark}(g)=\operatorname{din} E
$$

$A_{l} \omega A \in \operatorname{sl}(\mathbb{C}) \quad n=l+1$

De

Cartai mature !!!

