Ch. 4 Classification of semisimple Lie algebras

Let \(\mathfrak{g} \) be a f.d. semisimple Lie algebra
\[\mathfrak{z} \] maximal toral subalgebra
\[\mathfrak{k} = \text{Killing form} \quad (\cdot,\cdot) = \mathfrak{k}/\mathfrak{z} \quad \text{non-degenerate} \]
Using that we identified \(\mathfrak{z} = \mathfrak{t}^* \) and we
We had the
Cartan decomposition:
\[\mathfrak{g} = \mathfrak{z} \oplus \bigoplus_{x \in \mathfrak{R}} \mathfrak{z}_x \]
\[R \subset \mathfrak{z}^* \]
Let \(E = \mathbb{R}^R \), giving a real vector space. We showed that
\(RCE \), plus the restriction of form \((\cdot,\cdot) \) to \(E \), gives a root system.
Lemma: \mathfrak{g} is simple if and only if R is indecomposable.

Proof (\Leftarrow) Suppose \mathfrak{g} is not simple, so $\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_n$, simple ideals. Let $\mathfrak{z}_c = \mathfrak{z} \cap \mathfrak{g}_c$... then $\mathfrak{z} = \mathfrak{z}_c \oplus \cdots \oplus \mathfrak{z}_n$, \mathfrak{z}_c is maximal in \mathfrak{g}_c.

$R_c = \text{roots of } \mathfrak{g}_c \text{ cut } \mathfrak{z}_c$ so $R = R_1 \bigcup \cdots \bigcup R_n$

$E_c = \text{IrR} \mathfrak{R}_c = E \cap \mathfrak{z}_c^*$

Then $R_c \subseteq E_c$ is root system of \mathfrak{g}_c, and $E_c \perp E_j$ for $c \neq j$.

So root system is decomposable.

(\Rightarrow) Suppose $R = R_1 \bigcup R_2$, $R_1 \bigcup R_2$.

$(R_1, R_2) = 0$

$(\alpha + \beta, \alpha) = (\alpha, \alpha)
eq 0 \Rightarrow \alpha + \beta \not\in R_2$

$(\alpha + \beta, \beta) = (\beta, \beta)
eq 0 \Rightarrow \alpha + \beta \not\in R_1$

So $\alpha + \beta \not\in R$, so $[\mathfrak{g}_1, \mathfrak{g}_2] = 0$.

Consider subalgebra of \mathfrak{g}_1 generated by \mathfrak{g}_2's $(x \in R_1)$, above shows it is an ideal, so it 0 or \mathfrak{g}_1 by simplicity of \mathfrak{g}_1. Deduce $R = R_2$ or $R = R_1$.

\[\text{Actually it decomposes into indecomposable components.}\]
Let me work out \(\text{so}_{2n}(\mathbb{C}) \) in detail. We did \(\text{sp}_{2n}(\mathbb{C}) \) in HW6 - Q4. Do \(\text{so}_{2n+1}(\mathbb{C}) \) similarly.

By definition, its subalgebra of \(\text{gl}_{2n}(\mathbb{C}) \) of matrix

\[
X = \begin{pmatrix} A & B \\ C & D \end{pmatrix}
\]

so

\[
X^T \begin{pmatrix} 0 & J_n \\ J_n & 0 \end{pmatrix} + \begin{pmatrix} 0 & J_n \\ J_n & 0 \end{pmatrix} X = 0
\]

\[
J_n = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}
\]

\[
A^+ = J_n A J_n
\]

\[
D = -A^+ , \quad C = -C^+ , \quad B = -B^+
\]

Let \(\Sigma \) be the diagonal matrix \(W = \Sigma \begin{pmatrix} b & 0 \\ 0 & -b \end{pmatrix} \) \(n \)-dimensional toral.

Let \(\Sigma \in \mathbb{T}^* \) be a map taking \(h = \text{diag}(t_1, -t_1, -t_2, \ldots, -t_r) \) \(\mapsto t^* \).
For $1 \leq i < j \leq n$, consider $h = \text{diag}(t_i, \ldots, t_n, -t_n, \ldots, -t_i) \in \mathbb{Z}$ and h acts on these vectors by

$$(\varepsilon_{ij} - \varepsilon_{ji})(h) = (\varepsilon_i - \varepsilon_j)(h)$$

These lie in \mathcal{O}_A, in fact, together with \mathcal{O}_A they give a basis for \mathcal{O}_A.

$$\mathcal{O}_A = \mathbb{Z} \oplus \mathcal{O}_A$$

Let $R = \{ \pm (\varepsilon_i \pm \varepsilon_j) | 1 \leq i < j \leq n \}$

$$R^+ = \{ \varepsilon_i \pm \varepsilon_j | 1 \leq i < j \leq n \}$$

Show \mathcal{O}_A is maximal toral, and we've found the root system. We have $1/2$ of natural trace form ... for this induced form on \mathbb{Z}^* has $\varepsilon_1, \varepsilon_2, 0, \ldots, 0$.

Base for R is $\Delta = \{ \varepsilon_1 - \varepsilon_2, \varepsilon_2 - \varepsilon_3, \ldots, \varepsilon_{n-2} - \varepsilon_{n-1}, \varepsilon_{n-1} \pm \varepsilon_n \}$.
Now we have $R < E = RRC \mathbb{Z}^*$ root system, base Δ.

So can work out Cartan matrix, here, Dynkin diagram

$$\begin{pmatrix}
 2 & -1 & & \cdots & & -1 \\
 -1 & 2 & -1 & & & \\
 & -1 & 2 & -1 & & 0 \\
 & & 0 & -1 & 2 & \\
 & & & -1 & 0 & 2
\end{pmatrix}$$

all roots have $(\alpha_i, \alpha_j) = 2$

$\chi^* = \chi$

(α_i, α_j)

$n \geq 3$ it connected, so by lemma SO_6, SO_8, \ldots

D_n Dynkin diagram

$s\text{sl}(n)$

$n = 4$

$n = 6$

$SO_6 \subset SO_8, \ldots$

single Lie algebra

$SO_{2n} \subset \mathbb{C}$

$n = 2$
Back to general setup.

\[\bigoplus_{x \in \mathbb{R}} a \]

Pick a base Δ for R, hence, $R = R^+ \oplus R^-$.

\[\{x_1, \ldots, x_3\} \]

We showed at end of Ch. 2 that you could pick $0 \neq e_x \in \psi_x$ (where R^+)

Then there's a unique $0 \neq f_x \in \psi_x$ so

\[[e_x, f_x] = h_x = \frac{2t}{t^2} (x, x) \]

Also $[h_x, e_x] = 2e_x$, $[h_x, f_x] = -2f_x$ so

\[\forall \alpha \in \mathbb{R}, [e_x, h_x, f_x] = \alpha \]

This produces a basis \[\{e_x, f_x \mid x \in R^+ \} \cup \{h_x \mid h \in \mathbb{Z}\} \]

\[e_i = e_{\xi_i}, f_i = f_{\xi_i}, h_i = h_{\alpha_i} \]
Lemma 4: \mathfrak{g} is generated as a Lie algebra by e_i, f_i (for $i \in I$).

Proof. Take $\beta \in \mathbb{R}^+$. Show \mathfrak{e}_β is a Lie subalgebra of \mathfrak{g} generated by e_i. Similarly, each \mathfrak{f}_β is a Lie subalgebra generated by f_i. Then you get $h_i = [e_i, f_i]$. Hence, a linear basis.

Base by induction on $\text{ht}(\beta)$. Base is trivial. If $\text{ht}(\beta) > 1$,

Ch. 3 Lemma 4 $\Rightarrow f_i$. So $\beta - x_i < \mathbb{R}^+.$

Have $e_{\beta - x_i}$ by induction, suffices to show $[e_i, e_{\beta - x_i}] \neq 0$

But we saw S_{x_i}, S_{β} associated to x_i, act non ad on $\mathfrak{g}_{\beta + x_i}$, and that was an irreducible \mathfrak{g}_{x_i}-module.
Let \(n^+ = \bigoplus_{\alpha \in \mathbb{R}^+} \mathfrak{z}_\alpha \), \(n^- = \bigoplus_{\alpha \in \mathbb{R}^-} \mathfrak{z}_\alpha \).

So Cartan decomposition gives:

\[
\mathfrak{g} = n^- \oplus \mathfrak{z} \oplus n^+
\]

Note \(n^+ \) and \(n^- \) are nilpotent Lie algebras by Engel's theorem.

Also \(\mathfrak{b} = n^+ \times \mathfrak{z} \), so \(\mathfrak{b} \) is solvable.

For \(\mathfrak{sl}_n(\mathbb{C}) \), \(\mathfrak{z} = \mathfrak{z}_{3i-3j} = \mathfrak{c} \mathfrak{e}_{ij} \) with the standard choice