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Abstract

The geometry of mesoscopic single and multiple layer folds in rhyolitic obsidian flows is investigated. Folds are composed of
obsidian embedded in a matrix of pumice. Folds form by buckling processes as indicated by discontinuous deformation between
obsidian and pumice layers and by the geometries of wavetrains. Buckling occurs through a continuum of styles controlled
largely by the thickness ratio of pumice to obsidian (N). Styles of folds include chevron, harmonic, polyharmonic, disharmonic
and single-layer assemblages. Harmonic and chevron folds are observed for small values of N. For large values of N, folds
buckle independently of one another and form disharmonic and single-layer assemblages.

Wavelength-to-thickness ratios of single-layer folds are compared to theoretically predicted ratios for Newtonian and power
law fluids as a means of estimating shear viscosity ratios of obsidian and pumice. While all folds indicate that bubble-free
rhyolite is more viscous during flow than bubbly rhyolite, estimates of shear viscosity ratio based on Newtonian theory (~10—
500), may exceed estimates based on power law rheologies by more than an order of magnitude. Newtonian buckling theory
involves a number of simplifications and does not account for the possibly complex rheology of bubble-bearing rhyolite. © 1999

Elsevier Science Ltd. All rights reserved.

1. Introduction

Silicic lava flows provide an opportunity to examine
and interpret the deformation behavior of viscous
fluids throughout a wide range of flow conditions.
Studies of active lava flows and domes allow direct
rheological estimates for andesite and dacite lavas (e.g.
Anderson and Fink, 1992; Nakada et al.,, 1995).
However the dynamics of rhyolitic obsidian eruptions
are difficult to constrain because ‘“‘no geologist has
ever witnessed an obsidian in motion” (Nichols, 1941).
Yet rhyolitic activity has dominated the late Holocene
volcanic record in many parts of Oregon and
California (e.g. Newberry Volcano, South Sister
Volcano, Oregon; Medicine Lake Volcano, Mono-Inyo
Craters, California). The textural and structural com-
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plexities of these Holocene flows are well preserved,
and consequently they serve as nearly pristine records
of magmatic flow and deformation. The purpose of
this work is to describe the deformation style and
mechanisms of centimeter- to meter-scale buckle folds
in obsidian lavas, and to attempt to constrain the rela-
tive rheologic properties of the lavas in which they are
formed.

2. Geologic background

Rhyolitic lavas are texturally and structurally het-
erogeneous. Fink (1983) noted that chemically homo-
geneous lavas of rhyolitic obsidian flows generally
exhibit three textural types: coarsely vesicular pumice
(CVP), finely vesicular pumice (FVP), and obsidian
(OBS). These lavas differ primarily in their vesiculari-
ties and microcrystallinities, and boundaries between
types may be sharp or gradational. CVP has numerous
(>50%) large vesicles (diameter >1 mm), while FVP
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Fig. 1. Cross-sections through four rhyolite flows. (A) ‘Traditional’ view of rhyolite flows. (B—E): Textural lava types and zonation as revealed
by research drilling. FVP=finely vesicular pumice; OBS =obsidian; CVP=coarsely vesicular pumice; RHY =lithoidal rhyolite. Diagonal lines
between columns show correlation of textural zones among various flows. Modified from Manley and Fink (1987).

has both lower vesicularity (<40%) and smaller ves-
icles (diameter < 1 mm). Obsidian is, by definition, ves-
icle poor. The three lava types have consistent contact
relations throughout flows and occur in a character-
istic stratigraphic order (Fig. 1).

Two contrasting models have been proposed to
explain obsidian flow emplacement. The first calls on
lava extrusion following explosive activity from a
magma chamber strongly zoned in volatiles
(Eichelberger and Westrich, 1981; Fink, 1983).
According to this model, volatile-rich magma concen-
trated in the roof of a magma chamber causes initial
explosive activity. As the eruption continues, the vol-
atile-rich magma is depleted, and the eruptive style
changes to quiescent effusion of extensively degassed
magma. In this scenario, the textural complexity of
flows (i.e. pumiceous zones and apparent textural stra-
tigraphy; Fig. 1) develops in response to surface ves-
iculation and post-emplacement redistribution of
volatiles (e.g. Fink and Manley, 1987; Fink et al.,
1992). An alternative model (e.g. Eichelberger et al.,
1986) proposes that obsidian domes form from erup-
tion of highly inflated and gas-charged magma that
undergoes collapse during flow advance to form dense
black obsidian. According to this model, the magma
reservoir has a homogeneous pre-eruption water con-
tent, and the eruptive style is dictated by the rate of
upward migration of volatiles through a highly inflated
and permeable magmatic foam. The erupted magma is

vesicular at the vent, and subsequently collapses under
its own weight during flow. In this model, pumiceous
zones within obsidian flows are remnant zones of vesi-
culated lava that did not collapse during flow advance.
This permeable foam model requires internal shearing
to form obsidian, although structures recording such
shear have not been identified.

While models describing the formation of obsidian
flows address the development of pumiceous zones and
the distribution of volatiles throughout flows, they do
not address rheologic variations expected from hetero-
geneous distributions of bubbles and crystals in the
lava. The rheology of rhyolitic magma has been
described experimentally as a function of crystal con-
tent, water content, melt composition, and temperature
(e.g. Shaw, 1972; Murase and McBirney, 1973; Spera
et al., 1988). Recently, workers have considered the
effects of bubbles on shear viscosity. While Stein and
Spera (1992) suggested that bubbles will increase the
effective viscosity of the melt, other studies indicate
that the addition of bubbles to melt may actually
cause a decrease in shear viscosity (Bagdassarov and
Dingwell, 1992; Manga et al., 1998). Despite contrast-
ing experimental and theoretical results, it is com-
monly assumed that bubbles will greatly increase
viscosity of the melt, a view that has significant impli-
cations for models of magma ascent and vesiculation
in volcanic conduits (e.g. Jaupart and Allegre, 1991;
Dobran, 1992). Here we provide new constraints on
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Fig. 2. (a) Upright and (b) recumbent folds in interlayered obsidian
and coarsely vesicular pumice at Big Glass Mountain, California.

the rheology of bubble-bearing rhyolitic melts based
on observations and measurements of mesoscopic
structures in obsidian flows.

3. Mesoscale deformation in obsidian flows

Deformation of rhyolitic lavas occurs on many
scales and is well preserved in Holocene flows. Large-
scale (tens of meters) folding forms both recumbent
folds and evenly spaced ridges and valleys on flow sur-
faces (Fig. 2). The geometric relations of these folds
have been used to infer flow properties such as vis-
cosity and shear mechanisms (e.g. Fink, 1980, 1984;
Smith and Houston, 1994). Microscopic flow dynamics
have been investigated by measuring microlite (crystals
<30 um size) orientation distributions (Manga, 1998).
Mesoscopic structures such as buckle folds and boudi-
nage, although very common throughout the flows,
have not been studied in detail (Fig. 3).

3.1. Flow layering

Mesoscopic folds and boudinage arise as flow layer-
ing deforms during flow advance. Flow layering is a

Fig. 3. Oblique view of mesoscopic deformation features in poorly
vesicular rhyolite (white bands) and finely vesicular pumice (grey
lava) at Panum Dome, eastern California. Hat is 20 cm long.

pervasive structure in obsidian flows (e.g. Manley and
Fink, 1987; Swanson et al., 1989). Three types of flow
layers exist (Fig. 4). Ubiquitous sub-millimeter scale
flow layering is marked by planar variations in micro-
lite concentration. Pumiceous layering consists of pla-
nar variations in microlite or vesicle concentration.
Textural layering occurs in interlayered obsidian—
pumice assemblages and is defined by the alternating
arrangement of glassy and pumiceous layers of rela-
tively uniform thickness. Texturally layered lavas are
especially well developed at the contacts between obsi-
dian and coarsely vesicular pumice. It is difficult to
identify a uniquely primary layering structure because
multiple generations of flow layers develop as folds
become isoclinal and hinges are transposed.

3.2. Folds

Mesoscopic folds are defined by changes in the
shape and orientation of textural flow layers. Single
and multilayered folds consist of glassy rhyolite
embedded in a matrix of pumice (Fig. 5). Folded
layers are always less vesicular than the pumiceous
medium in which they are buckled. Rheological differ-
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Fig. 4. Three types of flow layering in obsidian lavas. (a) Microlite
defined flow layers (scale bar=1 mm). Microlites are approximately
30 um in length. Note disruption of microlite flow layering due to
formation of large vesicle. (b) Pumiceous layering in coarsely vesicu-
lar pumice defined by planar layers of vesicles (scale bar=3 mm). (c)
Isoclinally-folded textural layering consisting of alternating obsidian
(black) and vesicular layers (light grey). Scale bar is 8 cm long.

ences must exist between pumice and obsidian for
folds to form. Since major-element compositions of the
three textural lava types are uniform within individual
flows (Fink, 1982), and crystallinities of fold and
matrix vary by only a few volume percent, rheological
differences must arise because of variations in microlite

and/or bubble content. Manga (1998) showed that the
small volume fraction of microlites in obsidian (~0.01)
has a negligible effect on flow viscosity. For this
reason, it appears that bubbles exert an important in-
fluence on the effective viscosity of silicic lavas and are
responsible for rheological variations that lead to the
development of folds.

3.3. Boudinage

Boudinage and pinch-and-swell structures are com-
mon in layered silicic lavas (Fig. 6). Boudinage, in con-
trast to folds, forms in response to layer parallel
extension. As is the case for folded layers, boudinaged
layers are always less vesicular than the pumiceous
medium in which they are deformed. Fig. 6 shows an
example of boudinage from Panum dome, California.
In this structure, a dense glassy rhyolite layer, envel-
oped in finely vesicular pumice (¢ =~ 40%), underwent
layer-parallel extension, and fractured as a result of
extreme stretching. It appears that finely vesicular lava
subsequently flowed into the void. Subtle necking of
the boudinaged layer is recognized as evidence of
pinch-and-swell prior to fracture. Given that crystalli-
nities do not vary significantly between the boudinaged
and matrix lava, the manner of deformation, and
hence, rheologic variations, appear again to be primar-
ily a function of vesicularity differences.

4. Buckle folding

In this section we describe two types of small-scale
folds in obsidian flows, single-layer and multilayer
buckle folds, and we discuss mechanisms for their for-
mation. Next, we analyze single-layer folds using
Newtonian and power-law buckling theories (e.g. Biot,
1961; Smith, 1979) as a means of estimating the shear
viscosity ratio of bubble-poor and bubble-rich rhyolite.

Mesoscopic folds commonly form in contact zones
between obsidian and coarse pumice, and as parasitic
features on larger antiforms (Fig. 7). All folds form by
deflection of one or more planar obsidian layers due
to some component of layer-parallel compression.
Orientations of fold axes are highly variable on the
scale of the entire lava flow, but commonly trend par-
allel to larger-scale folds. The folds discussed here are
minor folds (wavelengths less than 100 m) whose geo-
metries are assumed to develop independently of the
influence of gravity (e.g. Johnson and Fletcher, 1994).

Such structures can be further classified as buckle
folds. In the process of buckle folding, mechanical
layering, an alternating arrangement of strong and
weak layers, plays an active role in controlling the
stress and strain distribution within the layer (e.g.
Groshong, 1975). In obsidian flows, mechanical layers
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Fig. 5. Single and multilayered glassy folds in coarse pumice: (a) multilayered harmonic, (b) recumbent single-layer isoclinal, (c) intrafolial buckle
fold, and (d) polyharmonic folds. Pumice vesicularity is approximately 50%. All exposures are vertical. Hammer is approximately 25 cm long.

are composed of lavas of different vesicularities, for
example obsidian and pumice. Evidence that folded
obsidian layers are indeed formed by buckling
includes: (1) discontinuous deformation across bound-
aries between pumiceous lava and folded obsidian
layers (Fig. 8), suggesting significant mechanical differ-
ences across layer boundaries, and thus ruling out pas-
sive folding; (2) single-layer folds are a part of semi-
regular wavetrains (Ramberg, 1963); and (3) the
repeated nature of buckles, which rules out the possi-
bility that folds developed by a transverse bend mech-
anism (e.g. Groshong, 1975).

Multilayer folds are composed of obsidian layers
separated by coarsely vesicular pumice. The amount of
pumiceous material between glassy layers varies from
approximately 0.1 to 10 cm. The relative thicknesses of
pumice and obsidian (pumice/obsidian=N) governs
the style of folding. For small values of N, harmonic
folds develop. Harmonically folded layers show a cor-
respondence of wavelength and symmetry in all layers
(Fig. 9a). With increasing N, and hence sufficiently
large separation between layers, the obsidian layers
buckle independently of one another and develop their
own characteristic wavelength. Under these conditions,
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Fig. 6. Boudinage of glassy rhyolite within finely vesicular pumice.
(a) Field photograph of vertical exposure of boudinage. (b) Tracing
of boudinage. Porosity of boudins is <10% while the porosity of
the pumice is approximately 40%. Minor necking of the boudinaged
layer in the far right and left portions of the photograph may indi-
cate pinch-and-swell disturbances.

disharmonic and single-layer buckle folds develop
(Figs. 9b and c). Fig. 10 shows the average matrix
thickness vs average folded-layer thickness for folds
from Big Glass Mountain, California. The style of
multilayer folds depends on the amount of interlayer
pumice, which in turn, implies that lava viscosity is a
strong function of bubble content. To address the in-
fluence of bubbles on viscosity, we investigate single-
layer buckle folds.

Single-layer buckle folds are less common than mul-
tilayered fold assemblages, yet occur in the same parts
of the flow. Many folds are sinusoidal, and obsidian
layers are surrounded by a zone of contact strain in
which bubbles are flattened in the fold cores and
stretched in the outer arcs of folds (Fig. 11). These
folds are typically composed of glassy and poorly ves-
icular rhyolite 0.1-3 cm thick, buckled within a pumic-
eous matrix. The vesicularity of the pumice varies
from approximately 40 to 85%, with much of the vari-
ation attributable to local flattening and extension in
and around fold hinges. The overall ptygmatic geome-
try of these folds suggests large viscosity contrasts
between the folded-layer and surrounding matrix (e.g.
Ramberg, 1960).

Fig. 7. Parasitic glassy folds in coarse pumice. (a) Vertical exposure
of flexural-slip folds on the limb of larger antiform (larger than field
of view). (b) Inclined view of an intrafolial buckle fold.

5. Fold analysis

Buckling instabilities arise as a result of contrasts in
the strengths of the materials under applied stress (e.g.
Smith, 1977). The folds analyzed here are formed
during magmatic flow, and hence the rheologic con-
trasts governing their formation may be viewed as vis-
cosity contrasts. Since structures in obsidian lavas are
defined by layered variations in vesicularity, the vis-
cosity contrasts that accompany fold development are
most plausibly explained by variations in the bubble
content of the melt. Unfortunately there are no direct
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Fig. 8. Photomicrograph of pumice (left) in contact with a folded obsidian layer (right). Strain is localized in the pumiceous lava. Note the

deformed vesicles. Scale bar is approximately 3 mm long.

rheological measurements of vesicular rhyolitic lavas.
However, geometric relations of folds preserve infor-
mation regarding the magnitude of the viscosity differ-
ences between obsidian and pumice. Below we
investigate how wavelength-to-thickness ratios of
buckle folds vary, and how such variations may reflect
the relative rheologic properties of obsidian and
pumice when compared to theoretically predicted
wavelength-to-thickness ratios.

5.1. Methods of measurement

In this analysis we seek to relate fold geometry to
the relative rheologic and textural characteristics of the
fold and matrix. We begin by presenting measurements
of four parameters that define the geometry and tex-
ture of fold assemblages: arc wavelength (w), layer
thickness (7"), shortening strain (¢), and matrix density
(p). The arc wavelength is the distance measured per-
pendicular to fold hinge lines along the center of the
folded layer between two successive crests or troughs
(Fig. 12). The layer thickness is measured normal to
both the folded-layer/matrix interface and the inferred
fold axis. Fold wavelength and thickness measure-
ments are used to compute the normalized wavelength
(=arc wavelength/thickness) which, in turn, is used to
calculate the shear viscosity ratio. Percent shortening
was computed by comparing the original length of the
folded layer, measured along the centerline of a wave
or wavetrain, and the final length of the fold assem-

blage, measured as the straight-line distance between
the ends of fold trains.

The density of the pumiceous matrix is used to cal-
culate porosity (¢ ). Dry bulk density of matrix pumice
was determined using Archimedes principle (e.g.
Houghton et al.,, 1988) on samples sawn from fold
assemblages. Since pumiceous specimens contain large
and irregular vesicles, samples were wrapped in wax
film of known volume to prevent infilling of voids with
water. Density was determined by weighing wax-
coated pumice samples and using the formula:

dry wt.
dry wt. — (wax wt. + wet wt.)

density (p) =

where wax wt. is the wet weight of the wax sheet used
to wrap pumice. Matrix densities were determined for
30 samples, each collected from within a 1-5 cm thick
envelope around measured fold perimeters. Porosity
was determined from the bulk density, assuming a
glass density of 2.19 g/cm®.

Criteria for fold selection included: (1) assemblages
consist of one glassy fold embedded in two-halfspaces
of pumice (i.e. no free surfaces); (2) folds exhibit plane
strain, as deformation parallel to fold axes appeared to
be negligible; (3) folds are not vesicular; (4) folds are
symmetrical.

5.2. Folding of Newtonian fluids

Folding theories (e.g. Ramberg, 1960; Biot, 1961)
can be used to predict the most stable fold wavelength



814 J. Castro, K.V. Cashman | Journal of Structural Geology 21 (1999) 807-819
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Fig. 9. Tracings of glassy folds ranging from (a) multilayered har-
monic, (b) disharmonic, to (c) single-layer ptygmatic. The folding
style varies with amount of interlayer pumice and competent layer
thickness.

that will grow under conditions of layer-parallel com-
pression and plane strain for a specific shear viscosity
ratio and layer thickness. Buckling theory developed
by Biot (1961) states that for every fixed layer-matrix
shear viscosity ratio, a dominant initial wavelength
develops in response to layer-parallel compression. For
a Newtonian fluid of shear viscosity p; embedded in a
medium of shear viscosity u,, the dominant wave-
length of folding (W), layer thickness (7°), and shear
viscosity ratio (w/um,) are related by:

1/3
Wy = 2nT(6ﬂ) (1)

M

(e.g. Ramberg, 1960; Biot, 1961). Note that the domi-

30
g
2 L 4
E 10
R ]
.9
g
=
Q
o
'C_‘q
o
3 4 +
S
[5)
& =3
5
>
<

1 —————————

1 10 100 500

Average matrix thickness (mm)

Fig. 10. Phase diagram of multilayered and single-layer folds from
Big Glass Mountain. Open symbols represent multilayer harmonic
(©) and polyharmonic (%) folds. Solid symbols represent disharmonic
(A) and single-layer (e) folds.

nant wavelength is an increasing function of layer
thickness and shear viscosity ratio (w/um). By re-
arranging Eq. (1), we obtain an expression for the
shear viscosity ratio:

3
Mo w
a - 0.024( T> ) 2

Ky

According to Biot’s theory, the arc wavelength (w),
as measured through the center of the fold, is assumed
to be the dominant initial wavelength that formed at
the onset of deformation. However, pre-buckling
shortening may lead to modifications of the initial
wavelength and therefore introduce error. To address
these effects we analyzed the interfaces between folded-
layer and matrix and inspected flow bands internal to
the folded layer. Most of the folds analyzed have
smoothly curving microlitic flow bands and have non-
undulating contacts with the matrix. By contrast, folds
that have undergone a finite amount of pre-buckling
shortening could be identified by cuspate—lobate inter-
faces between the matrix and the fold. Only folds not
affected by pre-buckling shortening are included in this
analysis.

6. Results

Table 1 contains measured and computed par-
ameters for dense glassy folds from Big and Little
Glass Mountains, Medicine Lake Volcano, California.
Most folds underwent approximately 50% shortening.
Because many folds are parts of wavetrains consisting
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Fig. 11. (a) Photomicrograph of a single-layer obsidian buckle fold
and its pumiceous matrix showing contact strain within the pumice.
Scale bar represents 1.5 cm. (b) Close up of deformation in the inner
and outer arc regions of the fold. Scale bar represents 0.5 cm.

of several fold arc segments, the values of arc wave-
length and layer thickness for each segment are aver-
aged. Although wavelengths and thicknesses vary
considerably, average normalized wavelengths vary
between 8.0 and 26.4. Matrix vesicularity is also vari-
able (~35-80%), as localized zones of extension and
flattening develop in close proximity to a fold (e.g.
Fig. 11Db).

Arc wavelengths and thicknesses of 73 glassy folds
from Big and Little Glass Mountains, and Obsidian
Dome, California are presented in Fig. 13. Folds show
a general increase in arc wavelength with increasing
layer thickness. Wavelength and thickness vary by
more than two orders of magnitude. The higher-
frequency variation in wavelength observed for folds
of constant layer thickness (1-5cm) is interpreted to
be a consequence of changes in the shear viscosity
ratio. While this trend is consistent with their for-

| ! =

Fig. 12. (a) Vertical exposure of a folded obsidian layer in coarsely
vesicular pumice from Big Glass Mountain, California. (b) Trace of
the fold showing thickness, 7, and arc wavelength, w, of the folded
layer. w; and pu,, are viscosity coefficients of the folded obsidian layer
and the pumiceous matrix, respectively. Measurements of wavelength
and thickness from this sample indicate that the shear viscosity ratio

(u/pm) is =33.

mation by a buckling mechanism (e.g. Ramsay and
Huber, 1987), the power law relationship given by Eq.
(2) reflects an added influence of the shear viscosity
ratio on the dominant wavelength.

Fig. 14 shows the frequency distribution of normal-
ized wavelengths (w/T') for glassy folds from Medicine
Lake and Obsidian Dome, California. The preferred
normalized wavelength (mode) is approximately 9.5.
Folds exhibiting large normalized wavelengths
(w/T > 9.5) are interpreted to have buckled under
large shear viscosity ratios compared to fold assem-
blages with  smaller normalized wavelengths
(w/T<9.5). Very few folds have wavelengths of less
than 6. The preferred normalized wavelength suggests
approximately uniform shear viscosity ratios for most
of the fold assemblages.

Table 2 shows obsidian—pumiceous rhyolite shear
viscosity ratios calculated using Eq. (2). Values are
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Measured and computed parameters on obsidian folds from Big and Little Glass Mountains, California

Sample* Thickness (cm)’ Wavelength (cm) Normalized wavelength % shortening (&) Matrix porosity
SBG-1 0.46 4.8 10.4 422 47.4
SBG-3 1.1 22.1 20.1 55.0 50.0
SBG-40 0.32 5.3 14.3 NA 80.6
SBG-41a 0.44 5.1 11.6 41.0 74.2
SBG-41b 0.11 2.9 26.4 47.0 74.2
SBG-55 0.78 7.6 9.7 514 67.0
SBG-59 0.37 4.0 10.8 37.0 NA*
SBG-69 1.3 16.3 12.5 54.0 NA*
BGM-1 0.3 6.1 20.3 8.0 66.0
LGM-9a 1.52 20.0 13.2 60.5 35.5
LGM-9b 4.5 49.0 10.9 32.5 52.2
LGM-11 3.0 39.0 13.0 46.7 65.6
LGM-13 20.0 160 8.0 17.6 514

*SBG samples are from distal locations of the southern lobe of Big Glass Mountain while the LGM samples are from the northern perimeter

of the north east lobe of Little Glass Mountain.

 Average layer thickness based on approximately 10 measurements.

¥ Folding analysis based on photographs.

based on the arc wavelength and folded-layer thickness
data presented in Table 1. The estimates indicate that
the obsidian shear viscosity (x;)) may be up to two
orders of magnitude greater than pumice shear vis-
cosity (um). These calculations include two critical
assumptions of Newtonian buckling theory: that both
media are Newtonian fluids, and the materials main-
tain constant volume throughout deformation. As
these constraints are largely not met in bubble-bearing
lava flows, absolute magnitudes of the shear viscosity
ratio inferred from normalized wavelengths are not
entirely accurate. However, these results indicate that,
in contrast to the conventional view of the effect of

1000 5
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Fig. 13. Plot of arc wavelength vs folded-layer thickness for 73 folds
from Big and Little Glass Mountains, California. Curve-fit was
determined using the linear least-squares method.

bubbles on lava viscosity (e.g. Sibree, 1933; Jaupart
and Allegre, 1991), bubbly rhyolitic lava can be less
viscous than bubble-poor lava.

7. Discussion

Rheological information is recorded in mesoscopic
folds in both their geometries and in the textural
differences between folded layers and matrix materials.
Newtonian buckling theory (e.g. Biot, 1961) assumes
that both materials behave as linear viscous fluids. At
low strain rates (<107 s~") bubble-free rhyolitic melt

25

T I

20

Number

Normalized Wavelength

Fig. 14. Distribution of normalized wavelength (w/T") of folds from
Big and Little Glass Mountains, and Obsidian Dome, California.
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Table 2

Shear viscosity ratios of folded obsidian layers and pumiceous
matrices from Big and Little Glass Mountains, California. Viscosity
ratio estimates are based on measured wavelength-to-thickness ratios
and theory described by Biot (1961)

Sample* Shear viscosity ratio (ui/um) Matrix porosity
SBG-1 28 47.4
SBG-3 200 50.0
SBG-40 100 80.6
SBG-41a 33 74.2
SBG-41b 500 74.2
SBG-55 22 67.0
SBG-59 33 NAT
SBG-69 50 NAT
BGM-1 200 66.0
LGM-9a 50 35.5
LGM-9b 33 52.2
LGM-11 50 65.6
LGM-13 12.5 51.4

*SBG and BGM samples are from distal locations of the southern
lobe of Big Glass Mountain while the LGM samples are from the
northern perimeter of the north east lobe of Little Glass Mountain.

T Folding analysis based on photographs.

may be Newtonian (Webb and Dingwell, 1990).
However, bubble-bearing lavas are non-Newtonian
(e.g. Stein and Spera, 1992), and suspensions of
bubbles may be shear-thinning when bubble defor-
mation is large (Manga et al., 1998). Indeed, pinch-
and-swell structures in obsidian flows may be ad-

Normalized Wavelength (w/T)

1 | 5] I
k—{a— .
1 2 5 10 20 50 100 200 500

Shear viscosity ratio {1/ Lm)

Fig. 15. Normalized wavelength (w/T) plotted against the shear vis-
cosity ratio (u/pm) for Newtonian folds buckled in: (A) strongly
shear-thinning matrix with power law exponent of 20 and (B)
Newtonian matrix. Curve (C) is based on folding of a shear-thinning
layer in a shear-thinning matrix whose power law exponents are
both 5. For large viscosity ratios the normalized wavelength of folds
increases as (u/um)"® in agreement with classical buckling theory
(e.g. Biot, 1961). Error bars represent the standard deviation of aver-
age normalized wavelengths of folds from Big Glass Mountain. The
upper and lower bounds in normalized wavelength define a range
(shown by arrows) in predicted viscosity ratio for the different rheo-
logical models. Plot is adapted from Smith (1979).
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Fig. 16. Relative viscosity vs matrix porosity (vesicularity) for glassy
folds from Big Glass Mountain (solid symbols) and Little Glass
Mountain (open symbols), California. Error bars represent the stan-
dard deviation in average porosity and relative viscosity. Points with-
out error bars represent single wavelength and porosity
measurements. Relative viscosities were determined graphically using
curve (A) from Fig. 14 and therefore represent estimates based on
folding of a Newtonian layer within a strongly shear-thinning matrix.
Solid curve represents the best-fit to experimental data of
Bagdassarov and Dingwell (1992).

ditional evidence that flow was non-Newtonian (e.g.
Smith, 1975, 1977, Emerman and Turcotte, 1984). An
obsidian layer buckled in pumice may represent an
assemblage in which the folded layer (obsidian)
behaves as a Newtonian fluid while the matrix
(pumice) behaves as a non-Newtonian fluid. A theor-
etical framework concerning such a rheologic configur-
ation is presented by Smith (1979).

Fig. 15 shows curves of normalized wavelength vs
shear viscosity ratio predicted for fluids with both
Newtonian and power law rheologies (Smith, 1977,
1979). The average normalized wavelengths of 17
buckle folds from Big Glass Mountain are shown for:
(A) Newtonian folds embedded in a shear-thinning
medium, (B) Newtonian fold—matrix pairs, and (C)
shear-thinning folds in a shear-thinning matrix. These
folds were chosen because they are completely devoid
of vesicles (end-member obsidian) and formed under
plane strain conditions. Error bars provide the stan-
dard deviation of the normalized wavelength, which, in
turn, provides a range in shear viscosity ratio accord-
ing to the various model curves. In the context of
Newtonian theory, the variance in normalized wave-
length corresponds to a range in shear viscosity ratio
of ~7-55. Comparable Newtonian folds of the
observed average normalized wavelength buckled in a
shear-thinning matrix would be produced over a range
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in shear viscosity ratio of ~1.5-12. A shear-thinning
fold buckled in a shear-thinning matrix would corre-
spond to a range in shear viscosity ratio of ~45-350
(e.g. curve C, Fig. 15). At least qualitatively, then,
shear-thinning behavior accentuates the viscosity con-
trast between obsidian and pumice, and leads to the
formation of a larger wavelength than would be pro-
duced in Newtonian media. If pumiceous rhyolite is
shear-thinning, and if obsidian is Newtonian during
flow, estimates of shear viscosity ratio based on Biot’s
theory may be high by more than a factor of 10.

Fig. 16 shows the shear viscosity ratio of glassy fold
assemblages from Big and Little Glass Mountains
plotted vs matrix vesicularity. Viscosity ratio estimates
are based on curve A, Fig. 15. The highly variable
matrix vesicularity renders a diffuse correlation
between shear viscosity ratio and bubble content.
However, the general increase in shear viscosity ratio
with increasing matrix porosity is consistent with ex-
perimental results (solid line; Fig. 16) from
Bagdassarov and Dingwell (1992). While estimates of
viscosity ratio based on non-Newtonian rheology do
not correspond directly with those found experimen-
tally by Bagdassarov and Dingwell (1992), most of the
samples plot within one order of magnitude of their
shear viscosity estimates.

Given that no direct measurements of the viscosity
of rhyolitic lavas are available, and experimentally
determined viscosities of bubbly rhyolitic melts are
scarce (Bagdassarov and Dingwell, 1992), testing rheo-
logical inferences based on comparisons of measured
and theoretically predicted fold wavelengths is difficult
to impossible. While we would be overly optimistic to
assume that precise values of shear viscosity ratio may
be obtained by the applications of Biot (1961) and
Smith (1979) folding theories, bubbly rhyolite appears
at least qualitatively to be less viscous than bubble-free
rhyolite. This result explains the common occurrence
of both mesoscopic folds and boudinage in layered
silicic lavas.

8. Conclusions

Analysis of intermediate-scale buckle folds yields
insights into both the deformation mechanisms and
the relative rheologic properties of obsidian lavas.
Buckle fold style is determined by the relative spacing
of obsidian layers and intervening pumice. This follows
from the fact that obsidian layers can translate past
one another along planes of less viscous pumiceous
lava. Hence, flexural-slip folding appears to be the
dominant mode of deformation in shortened, textu-
rally layered lavas. The observation that folded and
boudinaged layers are always less vesicular than the
surrounding pumiceous matrix is primary evidence

that bubble-poor lava behaves less viscously than bub-
bly lava. Single-layer buckle folds and boudinage may
therefore be used as qualitative indicators of the rela-
tive shear viscosities of bubble-poor and bubbly silicic
lavas. However, accurately quantifying shear viscosity
ratios from the geometries of these structures is not
straightforward. Viscosity ratio estimates (~1.5-12;
Fig. 15) based on a non-Newtonian model (Smith,
1979) may be more reliable than Newtonian estimates
(~10-500; Table 2) if bubble-bearing rhyolitic melts
are shear thinning (e.g. Manga et al., 1998).

The rheological evidence offered by mesoscopic
structures, while qualitative, is relevant to placing bet-
ter constraints on the formation and structural evol-
ution of obsidian flows. If obsidian flows are indeed
stratified with respect to vesicularity (see Fig. 1), the
rheologic properties of the flow must also vary in a
compatible manner and therefore, the structural evol-
ution of the flow should be strongly dependent on the
location and timing of formation of zones of bubble-
rich lava. Late-stage vesiculation of obsidian flow in-
teriors (e.g. Fink et al., 1992) may promote rheologic
contrasts similar to those inferred from mesoscopic
buckle folds. Such large-scale rheologic gradients may
be an important influence in the development of struc-
tures such as flow ridges (e.g. Fig. 2) and cavity struc-
tures (Jensen, 1993).
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