Knot Floer Homology of Left Head Trefoil

Here we are finding CFK^∞, which is an $\mathbb{F}[[y^m]]$-module

1. Start with a doubly-pointed Heegaard diagram.

2. Verify this actually is a Heegaard diagram for LHT...

Connect w to z avoiding a circles, pushed into \mathcal{H}_1. Connect z to w avoiding b circles, pushed into \mathcal{H}_2. \mathcal{H}_1 is the solid torus drawn, \mathcal{H}_2 is exterior.
3. Count holomorphic disks

\[g = 1 \] (genus)
\[k = 1 \] (\# boundary)
\[d = 1 \] (\# a.c.m.)

We have...

- one from a to b containing \(z \) \(\emptyset \)
- one from c to b containing \(W \) \(\emptyset \)

So...

\[\partial a = b \]
\[\partial c = u_b \]

Formula:

\[\exists x = \sum_{y \in \partial_a \cap \partial_c} \sum_{\phi \in T_z(x, y)} \# \hat{M}(\phi) \cdot u^w(\phi) \cdot \gamma \]

\[\text{for } M(\phi) = 1 \]
Determine the relative Maslow guidings

Formula

\[M(x) - M(y) = m(\phi) - 2 \sum_{i=1}^{k} n_{w_i}(\phi) \]

In our case,

\(n_w(\phi) = 0 \)
\(n_z(\phi) = 1 \)
\(n_w(\psi) = 1 \)
\(n_z(\psi) = 0 \)

\(M(a) - M(b) = m(\phi) - 2 n_w(\phi) \)
\[= 1 - 0 \]
\[= 1 \]

\(M(c) - M(b) = m(\psi) - 2 n_w(\psi) \)
\[= 1 - 2 \]
\[= -1 \]

\(M(a) - M(b) = M(b) - M(c) = 1 \)
Determine the relative Alexander gradings

Formula

\[A(x) - A(y) = \sum_{i=1}^{k} n_{z_i}(\phi) - \sum_{i=1}^{k} n_{w_i}(\phi) \]

In our case,

\[A(a) - A(b) = n_{z}(\phi) - n_{w}(\phi) \]

\[= 1 - 0 \]

\[= 1 \]

\[A(c) - A(b) = n_{z}(\psi) - n_{w}(\psi) \]

\[= 0 - 1 \]

\[= -1 \]
Remove the indeterminacy of the Maslov grading by looking at \(\hat{\text{CFK}}(\mathbb{H}) \). The homology is
\[\hat{H}(S^3) \cong \mathbb{F} \text{ in degree 0}. \]

Since \(\hat{\text{CFK}}(\mathbb{H}) \) only looks at disks which miss \(w \), we have
\[\text{one from } a \text{ to } b \text{ containing } z \quad \emptyset \]
\[\text{one from } a \text{ to } b \text{ containing } w \text{ up} \]

So...
\[da = b \]
\[dc = \text{outside} \quad dc = 0 \]

So the homology is
\[\text{if } b,c \text{ disjoint } \Rightarrow \hat{H} < b > \cong \hat{H} < c > \]

so we set \(c \) to have Maslov grading 0.
Use the Alexander polynomial
\[\Delta_k(t) = t - 1 + t^{-1} \] to remove the indeterminacy in the Alexander grading, since we require

\[\sum (-1)^d \text{rank } \hat{H}^k_d(k,r) \cdot t^r = \pm \Delta_k(t) \] \[\text{symmetrized} \]

From the above, a was the biggest and the relative values give everything else.

Summarizing, we have

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

See the computation of \(\hat{H}^k_d \) below...
8 Plot CFk^∞

U decreases Alexandr by 1

$\exists a = b$

$\exists c = ub$
We can specialize to CF_K^-.

To do this, consider the pairs $[x, i, j]$ above with $i \geq 0$

\[j = \text{Alexander} \]

Note: \ker is $F[u] < b, \text{Im} a - c$

im is $F[u] < b$

Homology is $F[u] \cong F[u] < \text{Im} a - c$
Compute HF_k^- by looking at Alexander filtration... (reintroduce the \(z \)-basepoint)

- Intersection points \(x \in T_a \cap T_b \) with \(A(x) \leq j \) form a subcomplex $F(K_j, j) \subset CF_k^-$

- Filled chain homotopy type is knot invariant
- Filled isomorphism type depends on diagram

\[\begin{align*}
 \text{Basically, each } F(k, j) \text{ is a horizontal line and we glue vertical arrows...} \\
 HF_k^- & \cong [F[u] \leftarrow] \oplus [F[b] \rightarrow] \\
\end{align*} \]
Can do the same for CF_k: compute HF_k which is the homology of the associated graded w.r.t. to Alexander filtration.

Associated graded of CF_k is

$$\begin{align*}
\text{F}(k,a+2)/\text{F}(k,a) & \quad \Rightarrow \quad 0 \\
\text{F}(k,a+1)/\text{F}(k,a) & \quad \Rightarrow \quad 0 \\
\text{F}(k,a)/\text{F}(k,a-1) & \quad \Rightarrow \quad \text{F} < a \\
\text{F}(k,a-1)/\text{F}(k,a-2) & \quad \Rightarrow \quad \text{F} < b \\
\text{F}(k,a-2)/\text{F}(k,a-3) & \quad \Rightarrow \quad \text{F} < c \\
\text{F}(k,a-3)/\text{F}(k,a-4) & \quad \Rightarrow \quad 0 \\
\end{align*}$$

So α must be 1 to agree with the Euler char. property.

$g_{\text{CF}_k} = \{ F < a \} \oplus F < b \oplus F < c \}$

$$
\begin{bmatrix}
(1,2) & (0,1) & (-1,0) & (A_m)
\end{bmatrix}
$$

$\text{HF}_k = \{ F < a,b,c \}$ since differentials on g_{CF_k} are trivial.
Compare this to $\Delta_k(t) = t - 1 + t^{-1}$

\[
\Rightarrow (-1)^0 t^{-1} + (-1)^1 t^0 + (-1)^2 t^1
\]

\[
= t^{-1} - 1 + t \quad \checkmark
\]