Knot Flour Homology of Lest Hand Trefoil
Here we are finding $C F k^{\infty}$, which is an $\mathbb{F}\left[u, u^{-1}\right]$-module
(1) Start with a doblly-pointed Heegaard diagram.

(2) Verify this actually is a Hegaard diana for LHT...

Connect wo to z avoiding α circles, proved into H_{1}. Connect z to w avading β circles, pushed onto H_{1}. A_{1}, is the solid torus drawn, H_{2} is exhort.

(3) Count holomorphic disks
$g=1 \lg (x)$

$d=1$ (\# α-comes)

We have...

- one form a to b containing $z \quad \varnothing$
- one from c to b containing $w \quad \psi$

So...

$$
\begin{gathered}
\partial a=b \\
\partial c=u b
\end{gathered}
$$

Formula:

$$
\partial x=\sum_{y \in T_{\alpha} \pi_{\beta}} \sum_{\substack{\phi \in \pi_{2}(x, y) \\ M(\phi)=1}} \# \hat{M}(\phi) u^{n_{w}}(\phi) \cdot y
$$

(4) Determine the relative Marlon gudings

Formula $\quad M(x)-M(y)=\mu(\phi)-2 \sum_{i=1}^{k} \rho_{w_{i}}(\phi)$

In our case,

$$
\begin{array}{ll}
n_{w}(\phi)=0 & n_{z}(\phi)=1 \\
n_{w}(\psi)=1 & n_{z}(\psi)=0
\end{array}
$$

$$
\begin{aligned}
M(a)-M(b) & =\mu(\phi)-2 n_{w}(\phi) \\
& =1-0 \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
M(c)-m(b) & =\mu(\psi)-2 n_{w}(\psi) \\
& =1-2 \\
& =-1
\end{aligned}
$$

$$
\Rightarrow M(a)-M(b)=M(b)-M(c)=1
$$

(5) Determine the relative Alexadr gating

Forme

$$
A(x)-A(y)=\sum_{i=1}^{k} n_{z_{i}}(\phi)-\sum_{i=1}^{k} n_{w_{i}}(\phi)
$$

Th our case,

$$
\begin{aligned}
A(a)-A(b) & =n_{7}(\phi)-n_{w}(\phi) \\
& =1-0 \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
A(c)-A(b) & =n_{z}(\psi)-n_{w}(\psi) \\
& =0-1 \\
& =-1
\end{aligned}
$$

(6) Remove the indeterminacy of the Maslou gassy by looking at $\widehat{C F K}(1+)$. The homology is $\widehat{H F}\left(s^{3}\right) \cong \mathbb{F}$ in Dy rue 0 .

Since $\hat{C F} K(H)$ only looks at disks which miss w, we have

- one form a to b containing $z \quad \varnothing$

So...

$$
\partial c=0
$$

So the homology is

$$
F\langle b, c\rangle /\langle b\rangle \cong F\langle c\rangle
$$

So we set c to have Master grinding 0 .
(7) Use the Alexander polynomial $\Delta_{k}(t)=t-1+t^{-1}$ to remove the indeterminacy in th Alexadr guiding, Since we require

$$
\sum_{d, r}(-1)^{d} \operatorname{rank} \underset{H F k_{d}}{ }(k, r) \cdot t^{r}= \pm \Delta_{k}(t)
$$

From the above, a was the biggest and the relative values give earthing else....

Summarizing, we have

	M	A	
a	2	1	
b	1	0	
c	0	-1	

See the computation of $\widehat{H F k}$ below...
(8) $\mathrm{Plot}_{\mathrm{o}} \mathrm{CFK}^{\infty}$

U decresers Alexader byl

$$
\begin{aligned}
& \partial a=b \\
& \partial c=u b
\end{aligned}
$$

(9) We con specialize to CFK

To do this, consider the pairs $[x, i j, i]$ above with $i \leq 0$

Note: ker is $\mathbb{F}[u]<b, U_{a}-c>$ in is $\mathbb{F}[u]$

Homology is $\mathbb{F}[u] \cong \mathbb{F}[u]<U_{a-c}>$
(10) Compute HFK - by looking at Alexander filtration... (reintroduce the z-busepoint)

- Intersection points $x \in T_{\alpha} \cap T_{\beta}$ with $A(x) \leqslant j$ form a sblomphx $F(K, j) \subset C F K^{-}$
- Filtered chan homotory type is knot inaraor
- Filtered isomorphism type departs on drajum

$$
j=\text { Alexubr }
$$

Basically, each $\tilde{F}(x, j)$ is a horizontal live and we gave vertical crows...

$$
H F K-\cong \mathbb{N}[a]\langle a\rangle \oplus \mathbb{F}\langle b\rangle
$$

(1) Can do the sume for $\widehat{C F K} .$. compute $\widehat{H F K}$ which is the homilgy of the associcted grated w.r.t. to Alexendr filtation

* Pirs down

Asounted goded of $\widehat{C F K}$ is A-graning.

$$
\begin{array}{cc}
\vdots & \vdots \\
f(k, \alpha+2) / f(k, \alpha) & 0 \\
F(k, \alpha+1) / f(k, \alpha) & 0 \\
F(k, \alpha) / f(k, \alpha-1) & \mathbb{F}\langle a\rangle \\
F(k, \alpha-1) / f(k, \alpha-2) & F(b\langle b\rangle \\
F(k, \alpha-2) / f(k, \alpha-3) & \mathbb{F}\langle c\rangle \\
\mathcal{F}(k, \alpha-3) / f(k, \alpha-4) & 0
\end{array}
$$

Let α be the Alexudr geding of gunerter a...

So a must be 1 to agree with th Evier char ipperty.

$$
\begin{aligned}
& \hat{g C F k}=\mathbb{F}\langle a\rangle \oplus \mathbb{F}\langle b\rangle \oplus \mathbb{F}\langle c\rangle \\
& (1,2) \quad(0,1) \quad(-1,0) \quad(A, m)
\end{aligned}
$$

$\widehat{H F k}=\mathbb{F}\langle a, b, c\rangle$ since differentals on $\widehat{g C F k}$ are torual..
(12) Compure this to $\Delta_{k}(t)=t-1+t^{-1}$

$$
\begin{gathered}
\Rightarrow(-1)^{0} t^{-1}+(-1)^{1} t^{0}+(-1)^{2} t^{1} \\
=t^{-1}-1+t
\end{gathered}
$$

