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ASYMPTOTIC ANALYSIS OF THE DOMINANT MECHANISMS IN
THE COFFEE EXTRACTION PROCESS∗
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Abstract. Extraction of coffee solubles from roast and ground coffee is a highly complex process,
depending on a large number of brewing parameters. We consider a recent, experimentally validated,
model of coffee extraction, describing extraction from a coffee bed using a double porosity model,
which includes dissolution and transport of coffee. It was shown that this model can accurately
describe coffee extraction in two situations: extraction from a dilute suspension of coffee grains
and extraction from a packed coffee bed. Despite being based on some simplifying assumptions,
this model can only be solved numerically. In this paper we consider asymptotic solutions of the
model describing extraction from a packed coffee bed. Such solutions can explicitly relate coffee
concentration to the process parameters. For an individual coffee grain, extraction is controlled by
a rapid dissolution of coffee from the surface of the grain, in conjunction with a slower diffusion of
coffee through the intragranular pore network to the grain surface. Extraction of coffee from the
bed also depends on the speed of advection of coffee from the bed. We utilize the small parameter
resulting from the ratio of the advection timescale to the grain diffusion timescale to construct
asymptotic solutions using the method of matched asymptotic expansions. The asymptotic solutions
are compared to numerical solutions and data from coffee extraction experiments. The asymptotic
solutions depend on a small number of dimensionless parameters and so are useful to quickly fit
extraction curves and investigate the influence of various process parameters on the extraction.

Key words. double porosity model, coffee brewing process, coffee extraction kinetics, solid-
liquid extraction, asymptotic analysis, matched asymptotic expansions
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1. Introduction. Coffee is one of the most widely consumed beverages in the
world. This popular drink is made from the roasted seeds (beans) of the coffee plant.
Following roasting, the beans are ground, and some of their soluble content is ex-
tracted by hot water. This extract is generally filtered to remove undissolved solids,
and the resulting solution of hot water and coffee solubles is called coffee. A large
number of techniques have been developed for the purposes of brewing coffee for both
domestic and catering use. In general, these methods fall into three categories: de-
coction methods, infusion methods, and pressure methods. Detailed descriptions of
many of these brewing procedures are included in [17, 18]. A common feature of all
these methods is that they are based on solid-liquid extraction or leaching, which
involves the transfer of solutes from a solid (coffee grains) to a fluid (water). Natu-
rally, the target with any of these methods is to consistently produce the best quality
coffee possible. First of all, defining what makes a good cup of coffee is a nontrivial
matter and to some extent a matter of personal preference. Coffee is composed of
over 1800 different chemical components [17]. Such a complex chemistry makes it
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MODELING COFFEE EXTRACTION 2197

very challenging to find correlations between the physical parameters of the extracted
solubles and the quality of the coffee beverage. In practice coffee quality is usually
evaluated by professional coffee tasters. The coffee brewing control chart is often used
as a simple alternative measure of coffee quality. This chart gives target ranges for
the brew strength and the extraction yield of the coffee based on preferences observed
in organized taste tests [19]. Brew strength is the ratio of mass of dissolved coffee in
the beverage to volume. Extraction yield is the percentage of dry coffee grind mass
that has been extracted as solubles into the water. The second issue is that of the
consistency of the brewed coffee. This difficulty arises from the dependency coffee
quality has on a large number of process variables. These include the brew ratio (dry
coffee mass to water volume used), grind size and distribution, brewing time, water
temperature, agitation, water quality, and uniformity of extraction [17, 19]. Clearly
a greater understanding of the science of the coffee brewing process and in particular
a model of the physics of the extraction process could prove useful in identifying the
influence of the various process parameters on the final beverage.

There have been a number of studies into the physics of coffee extraction over the
years. Industrial scale coffee extraction processes designed to produce instant coffee
have received considerable attention. These systems involve forcing hot water through
large packed columns called diffusion batteries, often connected in series, with the aim
of extracting a highly concentrated solution. Early work focused on improving the
design of these solid-liquid extractors [21, 22]. Much of this work is summarized
in [4]. Domestic and catering scale brewing systems have also been the subject of
investigation and mathematical modeling. The operation and efficiency of the stove-
top or Moka pot have received some experimental investigation [16, 9]. Fasano et al.
have developed general multiscale models of coffee extraction, focused primarily on
the espresso coffee machine [7, 6, 8, 5]. This multiscale approach is reflective of the
presence of multiple length scales in the coffee bed due to its double porosity nature.
Large pores exist between the grains, while smaller pores exist within the grains. The
porous nature of coffee grains can be seen in scanning electron microscope (SEM)
images of coffee grains such as those in [13, 19]. A schematic of the espresso system
is shown in Figure 1a. Voilley and Simatos [24] performed a number of different
extraction experiments on a well-mixed system of coffee grounds and water. The
influence of process parameters such as brewing time, granule size, brew ratio, and
water temperature on brew strength was investigated. A simple model was used
to describe the variations of brew strength during the extraction experiments. The
coffee grains were assumed to be spherical and suspended in a homogeneous system.
The extraction was modeled as diffusion of a single component from a sphere, with a
diameter equal to the mean grain diameter. Using the diffusion coefficient as a fitting
parameter, the model was found to provide reasonable agreement with the data.

The physics of the brewing process in the drip filter brewing system has received
very little attention. This is surprising as drip filter machines account for approxi-
mately 10 million out of a total of over 18 million coffee machines sold in Europe each
year [3]. In the drip filter brewing system, hot water is poured over a bed of coffee
grounds contained in a filter. The water flows through the bed under the influence
of gravity and extracts coffee solubles from the grains. A schematic of the process
is shown in Figure 1b. There are many interesting questions regarding the brewing
process in a drip filter system. Some of these questions were investigated by a group of
applied mathematicians at the ESGI 87 study group with industry at the University
of Limerick [2]. Issues considered included the evolution of the shape of the coffee bed
during brewing, correlations between the final shape of the bed and coffee quality, and
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Pressurised hot water 
in

Coffee Grounds

Brewed coffee out

Brewing
Chamber

Filter

(a)

Hot water in

Coffee
Grounds

Filter

Funnel

Brewed coffee out

(b)

Fig. 1. (a) Espresso coffee is made by forcing hot water under high pressure through a compacted
bed of finely ground coffee. (b) Drip filter brewing involves pouring hot water over a loose bed of
coarser coffee in a filter. In either method water flows through the bed, leaching soluble coffee
components from the grains. Any undissolved solids in the fluid are filtered from the extract as the
liquid leaves the filter.

the use of a single jet or multiple jets (shower head) to add water to the coffee bed. In
a recent paper, Moroney et al. [14] outlined a new multiscale model of coffee extrac-
tion from a coffee bed. This model was motivated by observations in coffee extraction
experiments. It was noted that extraction seemed to proceed in two stages: an ini-
tial rapid extraction over a short period followed by a much slower extraction during
the rest of the brewing time. These observations were explained by assuming that
the rapid extraction was occurring due to reduced mass transfer resistances from fine
particles and broken coffee cells (due to the grinding process) on the surface of larger
grains. The slower extraction was explained by an increased mass transfer resistance
from the intact coffee cells in the kernels of larger coffee grains. Numerical solutions
of the model equations showed that the model could quantitatively reproduce the
extraction profiles from experiment.

In this paper the coffee extraction model introduced in [14] is analyzed. The model
is nondimensionalized to identify the dominant mechanisms during coffee extraction.
Approximate solutions can be found based on the dominant mechanism of extraction
during different stages of the brewing process. Solutions can be found for both fine
and coarse grinds in the two experimental situations outlined in [14]. This paper
focuses on developing approximate solutions for coffee extraction from a flow-through
cylinder similar to that found in an espresso machine, except the water is at a much
lower pressure. In this case, solutions for extraction of fine and course grinds differ due
to a difference in the assumed initial coffee concentration in the coffee bed. Solutions
presented are for fine grind parameters. Such solutions can be used to predict the
coffee quality (coffee concentration and extraction yield) for a particular brewing
configuration with a given set of process parameters. Approximate solutions can also
be found for extraction of coffee in a French press–type cylinder. The solution in this
case is the subject of a separate paper.

2. Coffee extraction from a fixed cylindrical bed.

2.1. Coffee extraction experiments. The second coffee experiment outlined
in [14] involves the extraction of coffee in a cylindrical brewing chamber of a flow-
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Water
Reservoir

Intergranular
PoresF(h-phase)

Coffee
Pot

Intragranular
PoresF(v-phase)

CoffeeFSolids
(s-phase)

WaterFin

Coffee
Brew
Out

WaterFto
Grains

CoffeeFDissolving
inFgrains

Coffee
Dissolving
From
Surface

CoffeeFDiffusion
FromFBulk

Fig. 2. Transfers included in the coffee extraction model (reproduced from [14]): The diagram
shows the transfers of water and coffee which are described by the coffee extraction model presented
in [14].

through cell. In this experiment, coffee is placed in a cylindrical flow cell, and 1 L of
water at 90 ◦C is forced through the coffee bed by a rotary vane pump. The set-up
closely resembles that in Figure 1a. The coffee beverage exiting from the chamber
is collected in a coffee pot. The solubles’ concentration of the exiting coffee and the
coffee in the pot is measured throughout extraction. This experiment was conducted
for a number of different coffees. The focus here will be on the results for one fine
and one coarse grind presented in [14]. The coffee bed is static, and the grind size
distribution, bed dimensions, flow rates, and pressure drop across the bed are all
measured. Full experimental details are included in [14].

2.2. Mathematical modeling of coffee extraction experiment. A general
model for extraction of coffee from a static bed of porous grains is derived and de-
scribed in detail in [14]. This model is specialized to describe extraction from a
cylindrical brewing chamber, and some initial numerical results are presented. In this
section, the one-dimensional form of the general equations will be presented for a
coffee bed of height L. The model equations will be described. The key assumptions
made in [14] will be expanded upon and discussed.

A key feature of the model in [14] is that the coffee bed is represented by a porous
medium domain using a double porosity model. This means the coffee bed consists
of grains which are themselves porous. Isothermal conditions are assumed during
brewing as the temperature variations considered are small, and so the variation in any
temperature dependent parameters is considered negligible. Although the extraction
rate and the percentage of extractable mass increase with temperature [11], optimal
brewing conditions require a narrow temperature range in the bed (91 ◦C to 94 ◦C [19]).
Thus the assumption of isothermal conditions seems reasonable. It should be noted,
however, that large temperature variations within the bed may lead to a nonuniform
extraction. The infiltration of water into the grains during initial wetting stages is
possible due to roasting, which increases the grain permeability due to formation of
new pores through cracking [20], and grinding, which decreases the average grain size.
The model assumes that all pores in the coffee bed are saturated with fluid and so
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does not model unsaturated flow during the initial water infiltration or final draining
stages of the brewing process.

Due to the cylindrical geometry of the coffee bed and nature of the flow, we assume
that the coffee bed properties are homogeneous in any cross section, so the equations
can be reduced to one spatial dimension. This is the coffee bed depth, which we label
with the z-coordinate. The height of the coffee bed is L, with the bottom (filter exit)
at z = 0 and the top (filter entrance) at z = L. The transport of coffee and liquid
in the coffee bed is modeled by a set of conservation equations on the bed scale. The
macroscopic model consists of conservation equations for coffee and liquid in three
phases. The phase consisting of the pores between the coffee grains (intergranular
pores) is called the h-phase. The coffee grains are also porous. The pores within the
grains (intragranular pores) make up the v-phase. Finally the solid coffee matrix in
the grains is called the s-phase. The mechanisms in the model through which the
transport of fluid and coffee solubles, within and between these phases, occurs are
represented in Figure 2.

The coffee concentrations (mass per unit volume) in each of the phases are c∗h, c∗v,
and cs. The concentration (density) of the solid coffee matrix cs is assumed constant.
As coffee dissolves it is assumed that the grain porosity changes rather than the
solid concentration. Note that dimensional variables are indicated by an asterisk.
The porosity (volume fraction) of the intergranular pores is denoted by φh and is
also assumed constant. The volume fraction of the grains (1 − φh) is split into two
domains. The intragranular pores have a volume fraction (of the total grain volume)
of φ∗v, while the solid coffee matrix has a grain volume fraction of φ∗s = 1 − φ∗v. The
coffee volume fraction is further divided into three parts, as illustrated in Figure 3.
First there is a volume fraction of coffee which is insoluble under the conditions in the
coffee bed φ∗s,i, which can depend on water temperature, coffee grind distribution, and
other variables. For example, for water at 90 ◦C the extractable mass in coffee grains
can vary from 28% for coarse grinds to 32% for fine grinds of the same coffee [14].
The extractable coffee grain volume fraction is divided into two parts according to its
location in the coffee grains. The coffee grind distribution can contain a significant
volume of fine grains, which are broken cell fragments produced during grinding of
the coffee beans. After the grinding process, the surfaces of the coffee grains consist
mostly of broken coffee cells. Coffee in each of these locations is expected to have
a significantly lower mass transfer resistance than that in intact cells in the kernels
of larger grains. The volume fraction of this coffee is denoted φ∗s,s. The kernels of
larger grains consist of intact cells with a much higher mass transfer resistance. The
volume fraction of this coffee is denoted φ∗s,b. The volume fraction of soluble coffee in
the coffee grains is φ∗c = φ∗s,s + φ∗s,b. It is useful to define the fraction of the original
amount of coffee (in the dry coffee grains) remaining in the grain surfaces and in the
grain kernels at a given time. The volume fractions of coffee in the dry coffee grains,
grain surfaces, and grain kernels are denoted by φcd, φs,sd, and φs,bd, respectively.
The fractions of the original amount of coffee left on the grain surfaces and in the
grain kernels are denoted by ψ∗s and ψ∗v .

The surface area of the coffee grain distribution is a key parameter influencing
both liquid flow and extraction of coffee during the brewing process. The surface area
per unit volume of the entire grain distribution, which influences flow and extraction
of coffee from grain surfaces, is described using the Sauter mean diameter ksv1. The
Sauter mean diameter is defined as the diameter of a spherical particle which has the
same surface area to volume ratio as the grind size distribution under consideration
[10]. The surface area per unit volume of larger grains (diameter larger than 50 µm),
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φh 

1-φh 

φs,i
*  

φc*  φs,s
*  

φs,b
*  

Fig. 3. Location of coffee in the bed: The coffee bed consists of (intergranular) pores of volume
fraction φh and grains of volume fraction 1 − φh. The grains consist of (intragranular) pores of
volume fraction φ∗v and solids of volume fraction 1 − φ∗v. The schematic shows the breakdown of
this coffee in the grains (intragranular pores are not represented for clarity). The solid consists of
a soluble volume fraction φ∗c and an insoluble volume fraction φs,i. The soluble volume fraction is
broken into a volume fraction near the surface of grains φ∗s,s and a volume fraction in the kernels
(bulk) of grains φ∗s,b.

which influences extraction from the kernels of these larger grains, is described using
the Sauter mean diameter ksv2. The average coffee cell radius is given by m. The
effective diffusion coefficient of coffee in water is given by Dh in the h-phase and Dv

in the v-phase. The effective diffusion distance between the v-phase and the h-phase
is given by ll. It is assumed that there is a coffee concentration csat which is the
concentration in the liquid phase that would be in equilibrium with the concentration
in the solid phase. This is taken here to be the maximum solubility of coffee in the
liquid. Mechanical dispersion can be an important factor in flows in porous media [1].
The dispersion coefficient is denoted by Db. Other important parameters include the
fluid density ρ, the dynamic viscosity of the fluid µ, and the shape factor κ from the
Kozeny–Carman equations [10]. The Kozeny–Carman equations are used to relate the
bed permeability to its porosity. The fluid pressures in the h-phase and v-phase are
p∗h and p∗v, respectively. The system of equations in [14] includes a term for transfer
of fluid between the h-phase and the v-phase due to differences in pressures. This
correction is thought to occur much faster than other processes in the coffee bed and
is difficult to model accurately without further experimental insight. For this reason
these terms are neglected in the analysis here, which corresponds to the assumption
p∗h = p∗v at every point in the bed. Thus, neglecting these terms, the general one-
dimensional model becomes

∂c∗h
∂t∗

=
k2
sv1φ

2
h

36κµ(1− φh)2

∂

∂z∗

(
c∗h

(
∂p∗h
∂z∗

+ ρg

))
+ φ

1
3

hDh
∂2c∗h
∂z∗2

(2.1)

+Db ∂
2c∗h
∂z∗2

− α∗ (1− φh)

φh
φ∗v

4
3Dv

6

ksv2ll
(c∗h − c∗v)

+ β∗
(1− φh)

φh

12Dhφcd
ksv1m

(csat − c∗h)ψ∗s ,

∂2p∗h
∂z∗2

= 0,(2.2)

∂c∗v
∂t∗

= α∗φ∗v
1
3Dv

6

ksv2ll
(c∗h − c∗v) + γ∗φ∗v

−1 12φcdDv

m2
(csat − c∗v)ψ∗v(2.3)
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− c∗v
φ∗v

∂φ∗v
∂t∗

,

∂φ∗v
∂t∗

= − 1

rs

∂ψ∗s
∂t∗
− 1

rv

∂ψ∗v
∂t∗

,(2.4)

∂ψ∗s
∂t∗

= −β∗ 12Dhφcd
ksv1m

(
csat − c∗h

cs

)
rsψ
∗
s ,(2.5)

∂ψ∗v
∂t∗

= −γ∗ 12Dvφcd
m2

(
csat − c∗v

cs

)
rvψ

∗
v .(2.6)

0 < z∗ < L, t∗ > 0,(2.7)

c∗h(z∗, 0) = c∗h0(z∗), c∗v(z
∗, 0) = c∗v0(z∗),(2.8)

φ∗v(z
∗, 0) = φ∗v0(z∗), ψ∗s (z∗, 0) = ψ∗s0(z∗), ψ∗v(z∗, 0) = ψ∗v0(z∗),

p∗h(0, t∗) = 0, p∗h(L, t∗) = ∆P, c∗h(L, t∗) = 0,
∂c∗h(0, t∗)

∂z∗
= 0.(2.9)

Here rs and rv are the reciprocals of φs,sd and φs,bd, respectively. The pres-
sure boundary conditions come from the recorded pressure drop in experiment. The
concentration in the incoming water is zero at the inlet, and it is assumed that the
diffusive flux is zero at the outlet. Initial conditions need to be determined or inferred
from experiment once the bed is saturated with water, following the initial addition
of water to the dry coffee bed. The initial conditions could also be determined by
modeling the unsaturated flow during the initial infiltration of water. Note the pres-
ence of experimental fitting parameters, α∗, β∗, and γ∗, for the mass transfer terms.
These parameters are used to fit the model to the experiment. These are required
because many of the parameters in the model are difficult to obtain. For example,
the diffusion coefficient used here will be for caffeine in water. This value may not be
reflective of the effective diffusivity of coffee solubles in the system. Other parame-
ters such as the average diffusion distance ll, average cell radius m, and the specific
surface areas are similarly difficult to estimate accurately. Thus fitting parameters
are required to account for errors in each of the components of their respective mass
transfer coefficients.

The full description and derivation of (2.1)–(2.6) are contained in [14]. Here
it will suffice to outline the meaning of the equations in the context of Figure 2.
Equation (2.1) tracks concentration of coffee in the intergranular pores. The first
term on the right-hand side of the equation represents advection of coffee in the fluid
in the bed, described using Darcy’s law and the Kozeny–Carman equations. The
second and third terms represent diffusion and mechanical dispersion of coffee in the
flow. The fourth term represents transfer of coffee from the intact cells in the grain
kernels (intragranular pores) to the intergranular pores via slow diffusion through the
tortuous grains. The final term represents fast release of coffee from the broken cells
in the fine grains and the grain surfaces. Equation (2.2) gives the flow equation for
the fluid in the intergranular pores according to Darcy’s law. Equation (2.3) tracks
the concentration of coffee solubles in the intragranular pores. Note here that the
intragranular porosity, φ∗v, changes as coffee dissolves in the grains. The quantity of
coffee in the intragranular pores is reduced by slow diffusion to the intergranular pores
(first term) and increased by coffee dissolving from the cell walls in the grain kernels
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(second term). The final term is a volume correction to account for the changing
porosity. Equations (2.5) and (2.6) track the fraction of the initial amount of coffee
(in dry grains) remaining on the grain surfaces and in the solid matrix in the grain
kernels, respectively. As coffee dissolves, the intragranular porosity increases, and
this increase is tracked in (2.4). In the following section, this dimensional system of
equations will be specialized to model experimental results for extraction of coffee
from a packed coffee bed. The model will be nondimensionalized, and the dominant
terms will be analyzed to develop approximate solutions.

2.3. Modeling assumptions. Before nondimensionalizing the system, we can
take some further simplifying steps. Equation (2.2) can be solved using the pressure
boundary conditions from the experiment in question to find p∗h = ∆P

L z∗. Substituting
this into (2.1) eliminates p∗h. Integrating (2.4) with respect to time, we see that

(2.10) φ∗v +
1

rs
ψ∗s +

1

rv
ψ∗v = f(z),

where f(z) is an arbitrary function of z. We note that this is just the sum of the
intragranular pore volume fraction, the volume fraction of solid coffee on the surface,
and the volume fraction of solid coffee in the grain kernels. This sum must be equal to
the maximum intragranular pore volume fraction (porosity), which we define as φ∞v ,
and corresponds to the situation in which all soluble coffee is dissolved. The value
of φ∞v can be estimated from data on the percentage of the coffee grain mass which
is soluble for a given coffee grind. Thus we can eliminate φ∗v from the system using
(2.4) and

(2.11) φ∗v = φ∞v −
1

rs
ψ∗s −

1

rv
ψ∗v .

However, this still leaves us with quite a complex system to analyze. To further
simplify, we assume that the volume fraction of coffee in the grains is small compared
to the final intragranular porosity. This corresponds to φs,sd+φs,bd = r−1

s +r−1
v � φ∞v .

Thus we make the approximation that φ∗v ≈ φ∞v in the equations. We need to account
for this when assigning initial conditions in the intragranular pores.

In order to use the model, we need to find values for α∗, β∗, and γ∗. Experimental
extraction profiles are available for c∗h at the filter exit, and the two rates of extraction
are evident in the profiles. Thus α∗ and β∗ can be fitted. Data is not available for
c∗v, however, so γ∗ cannot be determined. A reasonable approximation may be that
γ∗ ≈ β∗. In reality, due to a much larger surface area per unit volume within the
grains, it is likely that γ∗ > β∗. Dissolution of coffee within the coffee grain and
diffusion of coffee from the grain pore network occur consecutively. Based on the
assumption that γ∗ ≥ β∗, the diffusion of coffee is the rate limiting step in this
series. We expect dissolution within the grains to proceed at a rate similar to that of
dissolution from grain surfaces, but experiments show a much slower extraction from
the grains, so the diffusion limited assumption seems reasonable. Thus, to simplify
the analysis, we assume the solid coffee in the cell walls within the grains dissolves into
the intragranular pores very quickly initially so that all soluble coffee in the grains is
dissolved in the fluid in the intragranular pores initially (i.e., once the coffee bed is
saturated with water). The validity of this assumption is based on the timescale of the
dissolution process being much shorter than the grain diffusion timescale. Provided
that diffusion of coffee from the grains is the rate limiting step of extraction, rather
than solid dissolution within the grains, the model may still work quite well. This
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corresponds to ψ∗v(z∗, 0) = 0 and means (2.6) drops out. This also allows us to
estimate c∗v(z

∗, 0) by assuming all the soluble coffee in the grain kernels has dissolved in
the intragranular pores. Thus we let c∗v(z

∗, 0) = ηcsat with 0 ≤ η ≤ 1 depending on the
coffee grind in question. The unsaturated flow during the initial infiltration of water
into the dry bed is not modeled here. This means we need to estimate the remaining
initial conditions after the bed is saturated with water and coffee brew starts to exit at
the bottom. Experiments suggest that the exiting coffee concentration may be steady
for perhaps the first wash through of the coffee bed before it starts to drop. Initial
exiting concentration for fine grinds is significantly higher than for coarser grinds and
may be close to the solubility of coffee in water. Based on the experiment data it will be
assumed that the initial concentration profile for the fine grind considered is at coffee
solubility throughout the bed, so c∗h(z∗, 0) = csat. For coarser grinds a linear initial
coffee concentration profile will be assumed varying from 0 at the filter entrance to the
initial exiting concentration from experiments cmax at the filter exit. So, for coarser

grinds, c∗h(z∗, 0) = cmax
(L−z∗)
L . More generally it would be useful to find approximate

solutions for an initial concentration profile which is an arbitrary function of z∗. It
remains to assign the initial condition to ψ∗s (z∗, 0), which represents the fraction of
the initial volume fraction of soluble coffee on the grain surfaces remaining following
water infiltration. One would expect this term to be smaller at the top of the bed than
at the bottom since water is in contact with these grinds longer during infiltration.
However, without modeling the initial water infiltration, the simplest assumption is to
uniformly decrease ψ∗s (z∗, 0) to correspond to the amount of coffee which has dissolved
to give c∗h(z∗, 0). Thus we let ψ∗s (z∗, 0) = ψ∗s0 with 0 ≤ ψ∗s0 ≤ 1. ψ∗s0 depends on
the parameters of the coffee grind in question and the assumed initial concentration
profile. With all this in mind, we rewrite the dimensional equations for the fine grind
coffee as

∂c∗h
∂t∗

=
k2
sv1φ

2
h

36κµ(1− φh)2

(
∆P

L
+ ρg

)
∂c∗h
∂z∗

+ φ
1
3

hDh
∂2c∗h
∂z∗2

(2.12)

+Db ∂
2c∗h
∂z∗2

− α∗ (1− φh)

φh
φ∞v

4
3Dv

6

ksv2ll
(c∗h − c∗v)

+ β∗
(1− φh)

φh

12Dhφcd
ksv1m

(csat − c∗h)ψ∗s ,

∂c∗v
∂t∗

= α∗φ∞v
1
3Dv

6

ksv2ll
(c∗h − c∗v),(2.13)

∂ψ∗s
∂t∗

= −β∗ 12Dhφcd
ksv1m

(
csat − c∗h

cs

)
rsψ
∗
s ,(2.14)

0 < z∗ < L, t∗ > 0,(2.15)

c∗h(z∗, 0) = csat, c∗v(z
∗, 0) = ηcsat, ψ∗s (z∗, 0) = ψ∗s0,(2.16)

c∗h(L, t∗) = 0,
∂c∗h(0, t∗)

∂z∗
= 0.(2.17)

We also have ψ∗v(z∗, t∗) = 0, and φ∗v(z
∗, t∗) is given by (2.11). A summary of the

model parameters and values is given in Table 1. Note that the solution here will be

D
ow

nl
oa

de
d 

11
/1

5/
18

 to
 1

84
.1

71
.8

4.
85

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODELING COFFEE EXTRACTION 2205

based on the assumed initial conditions for a fine coffee grind as outlined above. Once
the initial conditions are changed, the solution for the coarse grind follows the same
steps.

Table 1
Parameters for cylindrical brewing chamber extraction experiments [14].

Parameter Description Value
φ∞v intragranular porosity 0.7034
φh intergranular porosity 0.2
cs coffee solid density 1400 kg m−3

φcd soluble coffee volume fraction 0.143435
φs,sd surface coffee volume fraction 0.11
φs,bd grain kernel coffee volume fraction 0.033435
α∗ grain diffusion fitting coefficient 0.1833
β∗ surface dissolution fitting coefficient 0.0447
∆P pressure drop across bed 230 000 Pa
L coffee bed height 0.0405 m
ksv1 Sauter mean diameter (all grains) 27.35 µm
ksv2 Sauter mean diameter (grains > 50 µm) 322.49 µm
ll mean volume weighted grain radius 282 µm
Dh = Dv coffee diffusion coefficient (for caffeine [12]) 2.2 × 10−9 m2 s−1

ρ liquid density (for water at 90 ◦C) 965.3 kg m−3

µ liquid viscosity (for water at 90 ◦C) 0.315 × 10−3 Pa s
m coffee cell diameter 30 µm
csat coffee solubility 212.4 kg m−3

κ Kozeny–Carman shape coefficient 3.1
η initial intragranular concentration level 0.5
ψ∗s0 fraction of φs,sd remaining after filling 0.7304
g acceleration due to gravity 9.81 m s−2

2.4. Nondimensionalization. For the parameters involved in the extraction
experiments for either the coarse or fine coffee grinds, the advection term is found
to dominate strongly over the diffusion and mechanical dispersion terms in (2.12).
To see this we consider the ratio of the advection term to the diffusion term (with
z∗ ∼ L) for the coffee flow-through cell which is given by

(2.18)
k2
sv1Lφ

5
3

h

36κµDh(1− φh)2

(
∆P

L
+ ρg

)
.

For the experiments in question here we have ∆P
L � ρg, so the ratio is approximately

given by

(2.19)
k2
sv1∆P φ

5
3

h

36κµDh(1− φh)2
.

We use the parameters from Table 1 to estimate this term. Thus

(2.20)
k2
sv1∆P φ

5
3

h

36κµDh(1− φh)2
∼ 107,

and so advection dominates strongly over diffusion. Similarly, the ratio of advection
to dispersion is

(2.21)
k2
sv1Lφ

2
h

36κµDb(1− φh)2

(
∆P

L
+ ρg

)
≈ k2

sv1∆P φ2
h

36κµDb(1− φh)2
.

D
ow

nl
oa

de
d 

11
/1

5/
18

 to
 1

84
.1

71
.8

4.
85

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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The dispersion coefficient is more difficult to estimate and is related to the pore size
and the fluid velocity in the pores. In [14] a general expression for the dispersion co-
efficient in terms of fluid velocity and average pore size is used to show the dominance
of advection. Here we just note that unless the dispersion coefficient is many orders
of magnitude greater in size than the diffusion coefficient, advection dominates over
dispersion. For this reason these terms are neglected.

There are three main timescales of interest in the model. The timescale over
which coffee diffuses from the grain kernels to the intergranular pores is referred to
as the bulk diffusion timescale td. The timescale over which the coffee dissolves from
the grain surfaces into the intergranular pores is referred to as the surface dissolution
timescale ts. Finally, the timescale over which the coffee solubles are carried in the
flow out of the bed is referred to as the advection timescale ta. In terms of the coffee
bed parameters, these timescales are defined as

td =
ksv2ll

6α∗φ∞v
1
3Dv

, ts =
ksv1mφh

12β∗Dhφcdψ∗s0(1− φh)
, ta =

36L2κµ(1− φh)2

k2
sv1φ

2
h(∆P + ρgL)

.(2.22)

For the fine grind parameters from [14], ts = 1.042 s, ta = 5.356 s, and td = 42.231 s.
First we scale the equations on the bulk diffusion timescale. The concentration scale
for the intergranular pores is chosen to balance the advection term with the transfer of
coffee solubles by diffusion from the grains. The scale for the ψ∗s is chosen so that the
source term for transfer of coffee from the surface balances the previous two terms.
The scales chosen are as follows:

c∗h ∼
216κµL2α∗Dvφ

∞
v

4
3 (1− φh)3

ksv2k2
sv1φ

3
hll(∆P + ρgL)

csat, c∗v ∼ csat, t∗ ∼ td =
ksv2ll

6α∗φ∞v
1
3Dv

,(2.23)

ψ∗s ∼
α∗Dvφ

∞
v

4
3 ksv1m

2β∗Dhφcdksv2ll
, z∗ ∼ L.(2.24)

Before we present the nondimensional equations on the bulk diffusion timescale, we
define some nondimensional parameters to tidy up the presentation. First we define
ε to be the ratio of the advection timescale to the timescale of diffusion of coffee from
the grains. Thus

(2.25) ε =
216κµL2α∗Dvφ

∞
v

1
3 (1− φh)

2

ksv2k2
sv1φ

2
hll (∆P + ρgL)

=
ta
td
.

The other three nondimensional parameters are given by

a1 =
1− φh
φh

φ∞v , a2 =
432κµL2β∗Dhφcdψ

∗
s0 (1− φh)

3

k3
sv1mφ

3
h (∆P + ρgL)

=
ta
ts
, a3 =

csatrsφh
cs(1− φh)ψ∗s0

.

(2.26)

Physically a1 represents the ratio of the intragranular volume to the intergranular
volume, a2 represents the ratio of the advection timescale to the surface dissolution
timescale, and a3 represents the ratio of the maximum coffee mass capacity of the
intergranular pores to the initial mass of coffee present on the grain surfaces. We
will assume here that ε � 1, while a1, a2, and a3 are all O(1). For the fine grind
parameters we have ε = 0.127, a1 = 2.81, a2 = 5.139, and a3 = 0.473. In terms of
these parameters, the equations on the bulk diffusion timescale with boundary and
initial conditions prescribed are
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MODELING COFFEE EXTRACTION 2207

ε
∂Ch
∂τ

=
∂Ch
∂z
− εa1Ch + Cv + (1− a1εCh)Ψs,(2.27)

∂Cv
∂τ

= a1εCh − Cv,(2.28)

ε
∂Ψs

∂τ
= −a2a3(1− a1εCh)Ψs,(2.29)

0 < z < 1, τ > 0,(2.30)

Ch(z, 0) =
1

a1ε
, Cv(z, 0) = η,(2.31)

Ψs(z, 0) =
a2ψ

∗
s0

a1ε
, Ch(1, τ) = 0.(2.32)

It is clear from the form of the equations that we have a singular perturbation problem.
Thus we will need to consider the dynamics of the system on an initial layer in order
to satisfy the initial conditions. First we will solve the outer equations using a regular
expansion. Any constants of integration which arise will need to be matched to the
initial layer solutions when they are found.

3. Asymptotic solutions.

3.1. Perturbation solutions on the bulk diffusion (outer) timescale. We
use the following expansions for the bulk diffusion timescale:

Ch ∼ Ch0 + εCh1 + ε2Ch2,(3.1)

Cv ∼ Cv0 + εCv1 + ε2Cv2,(3.2)

Ψs ∼ Ψs0 + εΨs1 + ε2Ψs2.(3.3)

3.1.1. Leading order solutions. The leading order equations are

∂Ch0

∂z
= −Cv0 −Ψs0,(3.4)

∂Cv0

∂τ
= −Cv0,(3.5)

Ψs0 = 0,(3.6)

with solutions

Ch0(z, τ) = −e−τ
∫ z

1

f1(ξ) dξ, Cv0(z, τ) = e−τf1(z), Ψs0(z, τ) = 0,(3.7)

where f1(z) is an arbitrary function of z to be determined by matching.

3.1.2. Order ε solutions. Substituting in the known terms and using Ψs1 = 0
from the third equation in the first and second, the first order equations are

∂Ch1

∂z
= e−τ (1− a1)

∫ z

1

f1(ξ) dξ − Cv1,(3.8)

∂Cv1

∂τ
= −Cv1 − a1e

−τ
∫ z

1

f1(ξ) dξ,(3.9)
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2208 MORONEY, LEE, O’ BRIEN, SUIJVER, AND MARRA

Ψs1 = 0,(3.10)

with solutions

Ch1(z, τ) = −e−τ
(∫ z

1

f2(ξ) dξ

)
− e−τ (a1τ − a1 + 1)

(∫ z

1

∫ λ

1

f1(ξ)dξdλ

)
,(3.11)

Cv1(z, τ) = e−τf2(z)− a1e
−ττ

(∫ z

1

f1(ξ) dξ

)
,(3.12)

Ψs1(z, τ) = 0,(3.13)

where f2(z) is a second arbitrary function of z to be determined by matching.

3.1.3. Solutions for the bulk diffusion (outer) timescale. In summary, we
have the following outer solutions:

Ch(z, τ) = − e−τ
∫ z

1

f1(ξ) dξ(3.14)

− ε
(
e−τ

(∫ z

1

f2(ξ) dξ

))
− ε

(
e−τ (a1τ − a1 + 1)

(∫ z

1

∫ λ

1

f1(ξ)dξdλ

))
,

Cv(z, τ) = e−τf1(z)(3.15)

+ ε

(
e−τf2(z)− a1e

−ττ

(∫ z

1

f1(ξ) dξ

))
,

Ψs(z, τ) = 0.(3.16)

3.2. Perturbation solutions on the advection (inner) timescale. In this
section we will consider the system behavior in the initial layer. We rescale time via
τ = εt. We also rescale c∗h and ψ∗s to account for the different balances in the system
in the initial layer. In particular, the variables are rescaled as follows:

τ = εt, Ch(z, τ) =
1

a1ε
ch(z, t),(3.17)

Cv(z, τ) = cv(z, t), Ψs(z, τ) =
a2

a1ε
ψs(z, t).(3.18)

The scales for each of the dimensional variables in the initial layer are

c∗h ∼ csat, c∗v ∼ csat, t∗ ∼ ta =
36L2κµ(1− φh)2

k2
sv1φ

2
h(∆P + ρgL)

,(3.19)

z∗ ∼ L, ψ∗s ∼ ψ∗s0.(3.20)

Thus the equations on the inner timescale are given by

∂ch
∂t

=
∂ch
∂z
− εa1(ch − cv) + a2(1− ch)ψs,(3.21)

∂cv
∂t

= ε(ch − cv),(3.22)

∂ψs
∂t

= −a2a3(1− ch)ψs,(3.23)
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MODELING COFFEE EXTRACTION 2209

0 < z < 1, t > 0,(3.24)

ch(z, 0) = 1, cv(z, 0) = η,(3.25)

ψs(z, 0) = 1, ch(1, t) = 0.(3.26)

We use the following expansions for the advection timescale:

ch ∼ ch0 + εch1 + ε2ch2,(3.27)

cv ∼ cv0 + εcv1 + ε2cv2,(3.28)

ψs ∼ ψs0 + εψs1 + ε2ψs2.(3.29)

3.2.1. Leading order equations. The leading order equations are

∂ch0

∂t
=
∂ch0

∂z
+ a2(1− ch0)ψs0,(3.30)

∂cv0

∂t
= 0,(3.31)

∂ψs0
∂t

= −a2a3(1− ch0)ψs0,(3.32)

0 < z < 1, t > 0,(3.33)

ch0(z, 0) = 1, cv0(z, 0) = η,(3.34)

ψs0(z, 0) = 1, ch0(1, t) = 0.(3.35)

Integrating (3.31) and applying the initial condition gives cv0(z, t) = η. Next we solve
(3.32) for ch0 to get

(3.36) ch0 = 1 +
1

a2a3ψs0

∂ψs0
∂t

= 1 +
1

a2a3

∂ (lnψs0)

∂t
.

Now, substituting this into (3.30) and simplifying gives

(3.37)
∂2 (lnψs0)

∂t2
=
∂2 (lnψs0)

∂t∂z
− a2

∂ψs0
∂t

.

Integrating this with respect to time gives

(3.38)
∂ (lnψs0)

∂t
=
∂ (lnψs0)

∂z
− a2ψs0 + g1(z),

where g1(z) is the constant of integration. Thus we have

(3.39)
∂ψs0
∂t

=
∂ψs0
∂z
− a2ψ

2
s0 + g1(z)ψs0.

Using the initial condition ψs0(z, 0) = 1 and noting that since ch0(z, 0) = 1 then
∂ψs0

∂t (z, 0) = 0, we see that g1(z) = a2. Also, since ch0(1, t) = 0, it is easily found that
ψs0(1, t) = exp(−a2a3t). Thus the leading order problem for ψs0 is

(3.40)
∂ψs0
∂t

=
∂ψs0
∂z
− a2ψ

2
s0 + a2ψs0,
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1
z0

1

t

Ψ
s0

H1,
tL�

ã-
a

2
a

3
t

Ψs0Hz, 0L � 1

Fig. 4. Characteristic curves z + t = c of (3.42). Note that the solution propagates from the
initial condition for z + t < 1, while it propagates from the boundary condition for z + t > 1.

ψs0(z, 0) = 1, ψs0(1, t) = e−a2a3t.(3.41)

We can rewrite this as

(3.42)
∂ψs0
∂t
− ∂ψs0

∂z
= −a2ψs0(1− ψs0),

which we can solve using the method of characteristics. We have

dψs0
dt

= −a2ψs0(1− ψs0) on
dz

dt
= −1.(3.43)

If ψs0 is 0 or 1, it remains so; otherwise we solve the equation along the characteristics
z + t = c, c constant. The characteristics are shown in Figure 4. We note that the
solution propagates from the initial condition at t = 0 for z+t < 1, while it propagates
from the boundary condition at z = 1 for z + t > 1. In this case, since the initial
condition is ψs0(z, 0) = 1, we have ψs0 = 1 for all z + t < 1. We solve the equations
above for z + t > 1 to get

(3.44) ψs0(z, t) =

{
1, z + t < 1,
ea2

ea2−ea2z+ea2(z+a3(z+t−1)) , z + t > 1.

This also gives us the leading order solution for ch0:

(3.45) ch0(z, t) =

{
1, z + t < 1,

ea2−ea2z

ea2−ea2z+ea2(z+a3(z+t−1)) , z + t > 1.

3.2.2. Order ε equations. The order ε equations are

∂ch1

∂t
=
∂ch1

∂z
+ a2(1− ch0)ψs1 − a1(ch0 − cv0)− a2ch1ψs0,(3.46)

∂cv1

∂t
= ch0 − cv0,(3.47)
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∂ψs1
∂t

= −a2a3(1− ch0)ψs1 + a2a3ch1ψs0,(3.48)

0 < z < 1, t > 0,(3.49)

ch1(z, 0) = 0, cv1(z, 0) = 0,(3.50)

ψs1(z, 0) = 0, ch1(1, t) = 0.(3.51)

First we solve (3.47). We substitute the known values in for ch0 and cv0. As ch0 is
different for z + t < 1 and z + t > 1, so is cv1. Solving the equations, we find that

(3.52) cv1(z, t) =

{
(1− η)t, z + t < 1,

(1− η)t+ 1
a2a3

ln
(

ea2

ea2−ea2z+ea2(z+a3(z+t−1))

)
, z + t > 1.

Next we solve (3.48) for ch1 in terms of ψs1. We can do this for z+t < 1 and z+t > 1,
but only the former yields a solution for ψs1 and ch1, and so only this is presented
here. For z + t < 1 we get

(3.53) ch1 =
1

a2a3

∂ψs1
∂t

.

As was done at leading order, we can substitute this into (3.46), integrate with respect
to time, and use initial conditions to evaluate the constant of integration. This leads
to the equation

(3.54)
∂ψs1
∂t
− ∂ψs1

∂z
= −a2ψs1 − ηa1a2a3t.

Again, this can be solved by the method of characteristics so that for z + t < 1 we
have

(3.55) ψs1(z, t) =
a1a3((η − 1)e−a2t(1 + ea2t(a2t− 1)))

a2
.

This also gives us ch1 for z + t < 1:

(3.56) ch1(z, t) =
a1(η − 1)e−a2t(ea2t − 1)

a2
.

The same steps can be tried for z + t > 1; however, the integration with respect to
time is not possible in this case.

3.2.3. Solutions on the advection (inner) timescale. In summary, we have
the following inner solutions:

(3.57) ch(z, t) =

{
1 + ε(a1(η−1)e−a2t(ea2t−1)

a2
), z + t < 1,

ea2−ea2z

ea2−ea2z+ea2(z+a3(z+t−1)) , z + t > 1,

(3.58)

cv(z, t) =

{
η + ε ((1− η)t) , z + t < 1,

η + ε
(

(1− η)t+ 1
a2a3

ln
(

ea2

ea2−ea2z+ea2(z+a3(z+t−1))

))
, z + t > 1,

(3.59) ψs(z, t) =

{
1 + ε

(
a1a3((η−1)e−a2t(1+ea2t(a2t−1)))

a2

)
, z + t < 1,

ea2

ea2−ea2z+ea2(z+a3(z+t−1)) , z + t > 1.
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3.3. Matching. We can find the constants of integration remaining in the outer
solution by using modified Van Dyke matching [23] to match the initial layer solution
with the outer solution. This method involves comparing the inner expansion of the
outer solutions with the outer expansion of the inner (initial layer) solutions to obtain
unknown functions f1(z) and f2(z) in (3.14) and (3.15). This yields

f1(z) = η, f2(z) =

(
1

a3
+ 1

)
(1− z).(3.60)

Thus the outer solutions are

Ch(z, τ) = e−τ (η − ηz)(3.61)

+ ε

(
1

2a3
e−τ

(
(z − 1)2(1 + a3(1 + η(1 + a1(τ − 1))))

))
,

Cv(z, τ) = ηe−τ(3.62)

+ ε

(
−e−τ (−ηa1 + ηa1z)τ + e−τ

((
1

a3
+ 1

)
(1− z)

))
,

Ψs(z, τ) = 0.(3.63)

3.4. Composite solutions. We have inner and outer solutions for our equa-
tions. For ch we obtain an expansion to leading order in the inner layer and to O(ε)
in the outer region. The solution for cv is known to O(ε) in both regions, while ψs
has an inner solution at leading order while the outer solution is 0 to O(ε). Com-
parison with numerics shows that the inner and outer solutions fit quite well in their
regions of validity. In terms of the initial layer scalings, the outer solution for ch is
zero at leading order. As the initial layer solution can only be determined at leading
order, the inner and outer solutions for ch have no common part. Thus the composite
solution is just their sum. The solution for cv was formed by matching, so we can
easily identify the common part and subtract it off. The composite solution for ψs is
just the inner solution. In terms of the inner scalings and the Heaviside or unit step
function H(x), the composite solutions are

ch(z, t) =

(
1 + ε(

a1e
−a2t(η − 1)(ea2t − 1)

a2
)

)
H(1− (z + t))

(3.64)

+

(
ea2 − ea2z

ea2 − ea2z + ea2(z+a3(z+t−1))

)
H((z + t)− 1)

+ εa1

(
e−εt(η − ηz) + ε

(
1

2a3
e−εt

(
(z − 1)2(1 + a3(1 + η(1 + a1(εt− 1))))

)))
,

cv(z, t) = (η + ε ((1− η)t))H(1− (z + t))

(3.65)

+

(
η + ε

(
(1− η)t+

1

a2a3
ln

(
ea2

ea2 − ea2z + ea2(z+a3(z+t−1))

)))
H((z + t)− 1)

ηe−εt + ε

(
−e−εt(−ηa1 + ηa1z)εt+ e−εt

((
1

a3
+ 1

)
(1− z)

))D
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−
(
η − ηεt+ ε

(
1

a3
+ 1

)
(1− z)

)
,

ψs(z, t) =

(
1 + ε

(
a1a3((η − 1)e−a2t(1 + ea2t(a2t− 1)))

a2

))
H(1− (z + t))(3.66)

+

(
ea2

ea2 − ea2z + ea2(z+a3(z+t−1))

)
H((z + t)− 1),

where H(x) is defined by

(3.67) H(x) =

{
1 if x ≥ 0,

0 if x < 0.

3.5. Comparison of asymptotics with numerical simulation. Equations
(3.21)–(3.26) are solved numerically using the numerical method of lines and compared
to the derived composite solutions. The parameters used are those corresponding to
JK drip filter grind from [14]. The plot are shown in Figures 5–10. Figure 5 plots the
concentration through the bed at different times. At leading order the inner and outer
solutions for ch match identically. As the inner solution could only be determined
at leading order and the outer solution is zero at this order, the common part is
zero. For this reason the composite solution does not agree well with the numerical
solution initially, although inner and outer solutions agree well with the numerical
solution over their regions of validity. Figure 6 plots the concentration at the filter
exit (z = 0) against time. Data points from the experiment (in nondimensional units)
are also included for comparison. The inner and outer solutions are plotted separately
in the second plot to illustrate their agreement with the numerical solution. The
agreement with experimental data shows that the reduced system of equations can
still reproduce the experimentally determined extraction profile. Figures 7–10 include
the corresponding plots for cv and ψs. Asymptotic solutions are only compared to
numerical solutions in this case, due to difficulties in obtaining experimental data for
cv and ψs. As was the case with ch, the disagreement between the asymptotic and
numerical solutions for short times with z + t > 1 is due to the absence of an order ε
term in this solution.

4. Conclusion. In this paper we consider some approximate solutions to the
coffee extraction model described in [14]. The model equations are simplified and
nondimensionalized to describe extraction from a packed coffee bed. Approximate
solutions for extraction from a dilute suspension of coffee grains are considered in [15].
The nondimensional equations depend on a small number of parameters and represent
a vast simplification of the original equations. We can form approximate solutions to
these equations using perturbation techniques. The nondimensional parameters are
directly related to the physical parameters of extraction, so these solutions are useful
in investigating how a particular parameter affects the extraction profile.

Approximate solutions are formed for the model equations which describe coffee
extraction from a packed bed by a pressure driven flow of hot water. The solutions
are based on the presence of a small parameter in the system. The small parameter
used is the ratio of the advective timescale to the grain diffusion timescale. The
initial conditions also need to be estimated here. Different initial conditions are
prescribed depending on whether a coarse or fine coffee grind is used, thus leading
to different approximate solutions in these situations. The solution for the fine grind
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t = 0

t = 0.5

t = 1
t = 2

t = 5
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c h

Fig. 5. Plot of numerical (- -) and composite (–) solutions with ε = 0.127, a1 = 2.81, a2 =
5.139, a3 = 0.473, η = 0.5 (JK drip filter grind) of ch versus z at t = 0, t = 0.5, t = 1, t = 2, and
t = 5.
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(b)

Fig. 6. Plot of numerical (– –) and composite (–) solutions with ε = 0.127, a1 = 2.81, a2 =
5.139, a3 = 0.473, η = 0.5 (JK drip filter grind) of (a) ch versis t at z = 0. Experimental data
points are included. (b) Plot of numerical solution (– –) and inner (- -) and outer (–) solutions of
ch versus t at z = 0. Experimental data points are included.

case is presented here. Similar solutions can be found for initial conditions in the
coarse grind case. Approximate solutions are formed and compared to the numerical
solution of the equations and the available experimental data. These solutions allow
the coffee quality (in terms of brew strength and extraction yield) at a given time to
be explicitly written in terms of the process parameters of the system by integrating
the exiting concentration. Such solutions have the potential to be used to evaluate
a particular brewing set-up or investigate the impact of changing certain brewing
parameters.

There is large scope for further modeling of extraction from coffee beds. The
work here and in [14] focuses on extraction of coffee solubles from dilute suspensions
of coffee and from a water saturated, packed coffee bed. The model described in [14]
can be extended to describe unsaturated flow during filling and draining of the coffee
filter. Of particular importance is determining the conditions under which air pockets
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t = 0
t = 2

t = 6
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t = 30
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z
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Fig. 7. Plot of numerical (- -) and composite (–) solutions with ε = 0.127, a1 = 2.81, a2 =
5.139, a3 = 0.473, η = 0.5 (JK drip filter grind) of cv versus z at t = 0, t = 2, t = 6, t = 15, and
t = 30.
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Fig. 8. Plot of numerical (– –) and composite (–) solutions with ε = 0.127, a1 = 2.81, a2 =
5.139, a3 = 0.473, η = 0.5 (JK drip filter grind) of (a) cv versus t at z = 0. (b) Plot of numerical
(– –) and inner (- -) and outer (–) solutions of cv versus t at z = 0.

can become trapped in the bed during filling, as this leads to an uneven extraction. It
is also possible to extend the system of equations to model the extraction of a number
of coffee constituents rather than just considering coffee as a single entity. To model
a coffee bed in a drip filter machine, one would need to consider a number of further
complications. The geometry is different, the flow is more complex, and particles
can become entrained in the flow and transported around the bed. The method of
delivery of fluid to the bed (single jet or multiple jets) is also important [2]. For
fluid delivery with a single jet, the evolution of the coffee bed shape is important,
as a central cavity may form in the bed which shortens the path fluid has to travel
through the bed to exit the filter. On a smaller scale, there is scope to investigate
the kinetics of extraction of coffee on a grain scale and to compare the effectiveness
of different kinetic models in describing the extraction.
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t = 1

t = 0

t = 0.5

t = 2

t = 3
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Fig. 9. Plot of numerical (- -) and composite (–) solutions with ε = 0.127, a1 = 2.81, a2 =
5.139, a3 = 0.473, η = 0.5 (JK drip filter grind) of ψs versus z at t = 0, t = 0.5, t = 1, t = 2, and
t = 3.
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Fig. 10. Plot of numerical (– –) and composite (–) solutions with ε = 0.127, a1 = 2.81,
a2 = 5.139, a3 = 0.473, η = 0.5 (JK drip filter grind) of ψs versus t at z = 0.
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and Technology, Birkhäuser Boston, Boston, 2000, pp. 241–280.

[9] C. Gianino, Experimental analysis of the Italian coffee pot “Moka”, Amer. J. Phys., 75 (2007),
pp. 43–47.

[10] R. G. Holdich, Fundamentals of Particle Technology, Midland Information Technology and
Publishing, Leistershire, UK, 2002.

[11] A. Illy and R. Viani, Espresso Coffee: The Science of Quality, Elsevier Academic, New York,
2005.

[12] D. Jaganyi and S. P. Madlala, Kinetics of coffee infusion: A comparative study on the ex-
traction kinetics of mineral ions and caffeine from several types of medium roasted coffees,
J. Sci. Food Agric., 80 (2000), pp. 85–90.

[13] M.-L. Mateus, C. Lindinger, J.-C. Gumy, and R. Liardon, Release kinetics of volatile
organic compounds from roasted and ground coffee: Online measurements by ptr-ms and
mathematical modeling, J. Agric. Food Chem., 55 (2007), pp. 10117–10128.

[14] K. M. Moroney, W. T. Lee, S. B. G. O’Brien, F. Suijver, and J. Marra, Modelling of
coffee extraction during brewing using multiscale methods: An experimentally validated
model, Chem. Engrg. Sci., 137 (2015), pp. 216–234.

[15] K. M. Moroney, W. T. Lee, S. B. G. O’Brien, F. Suijver, and J. Marra, Coffee extraction
kinetics in a well mixed system, J. Math. Industry, 7 (2016), pp. 1–19.

[16] L. Navarini, E. Nobile, F. Pinto, A. Scheri, and F. Suggi-Liverani, Experimental inves-
tigation of steam pressure coffee extraction in a stove-top coffee maker, Appl. Thermal
Engrg., 29 (2009), pp. 998–1004.

[17] M. Petracco, Technology IV: Beverage Preparation: Brewing Trends for the New Millennium,
Blackwell Science Ltd., Oxford, UK, 2008, pp. 140–164.

[18] G. Pictet, Home and catering brewing of coffee, in Coffee, R. J. Clarke and R. Macrae, eds.,
Springer, The Netherlands, 1987, pp. 221–256.

[19] S. Rao, Everything But Expresso: Professional Coffee Brewing Techniques, S. Rao, available
from http://www.scottrao.com, 2010.

[20] S. Schenker, S. Handschin, B. Frey, R. Perren, and F. Escher, Pore structure of coffee
beans affected by roasting conditions, J. Food Sci., 65 (2000), pp. 452–457.

[21] M. Sivetz and H. E. Foote, Coffee processing technology, in Coffee Processing Technology,
Vol. 2, Avi, Westport, CT, 1963.

[22] J. A. M. Spaninks, Design Procedures for Solid-Liquid Extractors and the Effect of Hydro-
dynamic Instabilities on Extractor Performance, Ph.D. thesis, Agricultural University of
Wageningen, Wageningen, The Netherlands, 1979.

[23] M. Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford, CA, 1975.
[24] A. Voilley and D. Simatos, Modeling the solubilization process during coffee brewing, J. Food

Process Engrg., 3 (1979), pp. 185–198.

D
ow

nl
oa

de
d 

11
/1

5/
18

 to
 1

84
.1

71
.8

4.
85

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/S0036141098336698
https://doi.org/10.1137/S0036141098336698
http://www.scottrao.com

	Introduction
	Coffee extraction from a fixed cylindrical bed
	Coffee extraction experiments
	Mathematical modeling of coffee extraction experiment
	Modeling assumptions
	Nondimensionalization

	Asymptotic solutions
	Perturbation solutions on the bulk diffusion (outer) timescale
	Leading order solutions
	Order  solutions
	Solutions for the bulk diffusion (outer) timescale

	Perturbation solutions on the advection (inner) timescale
	Leading order equations
	Order  equations
	Solutions on the advection (inner) timescale

	Matching
	Composite solutions
	Comparison of asymptotics with numerical simulation

	Conclusion
	References

