Electrical conductivity through π–π stacking in a two-dimensional porous gallium catecholate metal–organic framework

Grigorii Skorupskii1,.#,† | Géraldine Chanteux2,.# | Khoa N. Le3 | Ivo Stassen1 | Christopher H. Hendon3 | Mircea Dinca1

1Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
2Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
3Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA

Abstract
Metal–organic frameworks (MOFs) are hybrid materials known for their nanoscale pores, which give them high surface areas but generally lead to poor electrical conductivity. Recently, MOFs with high electrical conductivity were established as promising materials for a variety of applications in energy storage and catalysis. Many recent reports investigating the fundamentals of charge transport in these materials focus on the role of the organic ligands. Less consideration, however, is given to the metal ion forming the MOF, which is almost exclusively a late first-row transition metal. Here, we report a moderately conductive porous MOF based on trivalent gallium and 2,3,6,7,10,11-hexahydroxytriphenylene. Gallium, a metal that has not been featured in electrically conductive MOFs so far, has a closed-shell electronic configuration and is present in its trivalent state—in contrast to most conductive MOFs, which are formed by open-shell, divalent transition metals. Our material, made without using any harmful solvents, displays conductivities on the level of 3 mS/cm and a surface area of 196 m²/g, comparable to transition metal analogs.

KEYWORDS
electrical transport, metal-organic frameworks, porous conductors, semiconductor materials

INTRODUCTION
The past decade saw an explosion of interest in electrically conductive metal–organic frameworks (MOFs). These materials, constructed from metal ions and organic linkers, feature high surface areas and porosity. This combination of conductivity and porosity is often their main attraction—allowing applications such as supercapacitor electrode materials, oxygen reduction catalysts, and chemiresistive sensors. Another advantage of conductive MOFs lies in their intrinsic tunability owing to both the combinatorial diversity of accessible structural building blocks, as well as the possibility of functionalizing the organic fragments. Despite the extensive research into these materials, the mechanisms of charge transport within them—and the origin of the high conductivities—are not yet fully understood.

The highest electrical conductivities are seen in two-dimensional (2D) MOFs, which are homologous to Ni₃[(2,3,6,7,10,11-hexaiminotriphenylene)₂ —and hold the record for room-temperature electrical conductivity in MOFs and other porous solids (150 S/cm for single crystals). Studies of 2D conductive MOFs have largely focused on identifying the role of the organic linkers. Extensive research has
been devoted to evaluating the importance of metal-linker covalency by varying the linkers and their functional groups. Comparatively less focus has been given to the metal used, and the list of metal ions used in 2D conductive MOFs is generally limited to late first-row divalent transition metal ions, such as Ni(II), Co(II), and Cu(II).5,6,8-10

Here, we expand the list of metals used in 2D conductive MOFs to include gallium in order to analyze the effects of the higher cationic charge of Ga(III)—and its closed-shell configuration—on 2D conductive MOF’s electrical transport properties. We paired the oxophilic Ga(III) with the oxygen-based 2,3,6,7,10,11-hexahydroxytriphenylene (H\textsubscript{6}HOTP) ligand to form a layered electrically conductive porous MOF. The material is synthesized in mild conditions without the use of any organic solvents, making the material suitable for environmentally conscious applications. The electrical conductivity of the material was above 3 mS/cm, which is similar2 to previously reported11 Ni(II) and Co(II)-based homologous MOFs. Based on \textit{ab initio} electronic structure calculations, we believe \(\pi\)-\(\pi\) stacking interactions provide a pathway for electronic transport in the material, and this accounts for the similarity in electrical conductivity to the Ni(II) and Co(II) analogs despite the different chemistry of the metal nodes.

RESULTS AND DISCUSSION

The reaction of gallium(III) sulfate, gallium(III) nitrate, and 2,3,6,7,10,11-hexahydroxytriphenylene (H\textsubscript{6}HOTP) in deionized water at 80°C afforded a dark teal microcrystalline powder with the overall formula (excluding noncoordinated solvent) of Ga\textsubscript{9}(H\textsubscript{2}O)\textsubscript{30}(HOTP)\textsubscript{4}(SO\textsubscript{4})\textsubscript{6} \(\text{Ga}(\text{HOTP})\textsubscript{4}\). Importantly, this synthesis uses no toxic or environmentally harmful organic solvents or transition metals. Synthesis was performed at relatively low temperatures, making this material a considerably “greener” alternative to most other conductive MOFs, which often require the use of dimethylformamide (or similar solvents)11 or employ toxic and carcinogenic metals, such as nickel.6 Although the material’s formula demands only the presence of sulfate anions, we found that controlling the solution’s pH level via the addition of nitrate salt into the reaction mixture significantly improved the material’s crystallinity. The resulting powder consisted of nanoscale hexagonal needles (Figure 1E), which were, due to their small size, unsuitable for single-crystal X-ray diffraction. The powder did, however, produce bright and well-resolved Powder X-ray diffraction (PXRD) patterns, which strongly resembled those of the previously reported11 Co(II) and Ni(II)-based materials. In order to improve our understanding of the structure of Ga\textsubscript{9}(HOTP)\textsubscript{4}, we took advantage of this similarity and performed a Rietveld refinement12 (Figure 2) of the PXRD data for Ga\textsubscript{9}(HOTP)\textsubscript{4} using the reported model for Co\textsubscript{9}(HOTP)\textsubscript{4} as a starting point. The resulting structure is shown in Figure 1. Detailed synthetic and characterization methods are provided in the Supplementary Material.

Ga\textsubscript{9}(HOTP)\textsubscript{4} crystallizes in the trigonal space group \(P\overline{3}c1\) with \(a = 21.6972(12)\) Å and \(c = 13.7911(11)\) Å. The structure consists of interleaved layers of \([\text{H}_2\text{O}]_4\text{Ga}_3(\text{HOTP})\) molecular clusters (Figure 1B), and polymeric layers of the overall formula \([\text{H}_2\text{O}]_2\text{Ga}_3(\text{HOTP})_2\) (Figure 1C). These layers are separated by approximately 3.45 Å, which is a fairly typical13 distance for \(\pi\)-\(\pi\) stacked aromatic carbon moieties. Compared to the reported structure11 of Co\textsubscript{9}(HOTP)\textsubscript{4}, this structure has two critical dissimilarities. First, the structure incorporates ordered sulfate anions, seemingly to compensate for the higher cationic charge of Ga(III). This leads to a significant reduction in the accessible pore volume, with the pore diameter decreasing to \(\sim 8\) Å. Second, whereas the Co and Ni-based materials show significant buckling within the polymeric layers, here, the layers lay flat. The layer stacking distance for Ga\textsubscript{9}(HOTP)\textsubscript{4} is also larger than in its transition metal analogs (\(\sim 3.45\) vs. \(\sim 3.3\) Å for Co\textsubscript{9}(HOTP)\textsubscript{4}), and the two features may share a common origin. One possibility may lie in hydrogen bonding interactions between the apically coordinated water molecules and the linkers’ oxygen atoms—these interactions perhaps “squeeze” the MOF into a buckled configuration at shorter interlayer spacings, and “stretch” it into a flat layer with larger interlayer distances.

Although Ga\textsubscript{9}(HOTP)\textsubscript{4} has a reduced pore size and higher density compared to its Co(II) analog, it still shows a considerable Brunauer–Emmett–Teller (BET)14 surface area of 196 m2/g as determined from N\textsubscript{2} adsorption measurements (Figure 3) for material activated using supercritical CO\textsubscript{2} drying. The material shows a clear type-I adsorption isotherm, indicating that the observed surface area is from internal pores and not the powder’s external surface. The experimental BET surface area matches well with the predicted surface area of 170 m2/g, which was estimated from geometry-based calculations as implemented in zeo++.15

Ga\textsubscript{9}(HOTP)\textsubscript{4} is moderately electrically conductive. Two-probe pressed pellet resistivity measurements over three independent batches show a median conductivity of 3 mS/cm at room temperature (Figure 4A). Intriguingly, this value is similar to those reported for Ni\textsubscript{9}(HOTP)\textsubscript{4} and Co\textsubscript{9}(HOTP)\textsubscript{4} using the same measurement setup.3 This finding is surprising given the significant differences in the metal linkages within the polymeric layers; Ni(II) and Co(II) are divalent and have open-shell electronic configurations that contrast with trivalent, closed-shell Ga(III). We propose two potential explanations for this. First, it is possible that the measured conductivity of these materials is dominated by grain boundary resistance; powders of Ga\textsubscript{9}(HOTP)\textsubscript{4} have a similar crystallite morphology and size to those of its transition-metal analogs (cf. Figure 1A in Ref. 10 with Figure 1E of this work). Indeed, the temperature dependence of the electrical conductivity of Ga\textsubscript{9}(HOTP)\textsubscript{4} is consistent with this explanation. Pellets of Ga\textsubscript{9}(HOTP)\textsubscript{4} show thermally activated transport, which is fit best using a three-dimensional Mott variable-range hopping (VRH)16 law between 100 and 290 K. Although multiple possibilities exist that could explain such a temperature dependence, it is reasonable to expect it originates in charges hopping between grains of a nanocrystalline powder. Second, the similarities in the electrical conductivities of Ga\textsubscript{9}(HOTP)\textsubscript{4} with its Ni(II) and Co(II) analogs may lie in the extensive \(\pi\)-\(\pi\) stacking interactions between the conjugated linkers, as we observed previously in HOTP materials with rare-earth metals.13 Indeed, if the primary path for electrical transport is parallel to the \(\pi\)-\(\pi\) stacked columns, and not within the polymeric layers, then it is reasonable to expect little variance in electrical conductivity with a metal ion.
Figure 1 Crystal structure of Ga$_9$(HOTP)$_4$. (A) The material forms an intrinsically porous layered MOF with a pore diameter of approximately 8 Å. (B) The structure is composed of interleaved layers of molecular trinuclear complexes and (C) extended polymeric layers. (D) The layers are separated by approximately 3.5 Å, which is a typical π–π stacking distance. Unlike in the transition-metal analogs Co$_9$(HOTP)$_4$ and Ni$_9$(HOTP)$_4$, in Ga$_9$(HOTP)$_4$, we see ordered sulfate anions in the pore seemingly to compensate for the higher ionic charge of Ga. (E) Scanning electron micrograph of the microcrystalline powder illustrating the hexagonal shape of the needle-like crystallites. Hydrogen atoms and noncoordinated solvent molecules are omitted from (A–D).

Figure 2 Rietveld refinement of Ga$_9$(HOTP)$_4$. The diffraction data (circles) are fitted (orange solid line) to satisfactory residuals of $R_{Bragg} = 3.10\%$, $R_{wp} = 6.83\%$, and GOF = 3.85. Gray line depicts the difference, green bars the positions of expected reflections, and purple bars reflections belonging to the internal standard Al$_2$O$_3$.

To gain better insight into the nature of charge transport in both Ga$_9$(HOTP)$_4$, we performed ab initio density functional theory (DFT) calculations of the electronic band structure of the material. As shown in Figure 5, Ga$_9$(HOTP)$_4$ is calculated to be a narrow-gap semiconductor with a predicted band gap of 0.38 eV. The experimental optical band gap for Ga$_9$(HOTP)$_4$, as determined from diffuse reflectance measurements, was 0.36 eV, which agrees perfectly with computational predictions. Two crucial features can be seen in the band structure of Ga$_9$(HOTP)$_4$: (1) the bands along the Γ–K–M directions, which correspond to interactions within the 2D layers, are relatively flat and indicate little charge delocalization within the layers; (2) along A–Γ, the bands see considerably more dispersion due to the π–π stacking interactions between the aromatic linkers. It is, therefore, likely that the charge transport along the stacking direction will be preferred compared to within the layers, which is similar to what we observed previously for rare-earth–based HOTP materials.

Figure 3 N_2 adsorption and desorption isotherms of Ga$_9$(HOTP)$_4$. The isotherms show clear type-I behavior, indicating intrinsic porosity and a BET surface area of 196 m2/g, which matches well with the expected value for the crystal structure (170 m2/g).

Stacking interactions between the aromatic linkers. It is, therefore, likely that the charge transport along the stacking direction will be preferred compared to within the layers, which is similar to what we observed previously for rare-earth–based HOTP materials. Overall, the ab initio calculations agree with our hypothesis that charge transport in the material may happen preferentially along the π–π stacked columns of the linkers—explaining the similarities in electrical conductivities between Ga$_9$(HOTP)$_4$ and its transition metal analogs.

Much of the attraction of electrically conductive MOFs lies in fine control over their structure and composition. Despite this, most works
on 2D layered conductive MOFs—the most conductive, and perhaps the most likely candidates for real-world applications—have so far been constrained in the variety of metal ions used mainly to first-row transition metals. In this work, we reported a new conductive MOF based on trivalent gallium, which had not been used in conductive MOFs. Through a combination of experimental and theoretical techniques, we have gained insight into the nature of electrical transport in this material and found π–π stacking interactions to be likely responsible for the conductivity. Although we have reached a similar conclusion previously with three-dimensional rare-earth–based conductive MOFs, this work still provides useful new information due to the truly 2D nature of Ga₉(HOTP)₄.

applications of the novel Ga₉(HOTP)₄ and inform the future design of conductive porous MOFs.

ACKNOWLEDGMENTS
The authors thank Dr. Lilia Xie for the helpful discussions. Work in the Dincă group was supported by the National Science Foundation (DMR-2105495). This material was also based upon work supported by the National Science Foundation through the Division of Materials Research under grant no. DMR-1956403 and the Cottrell Award.

COMPETING INTERESTS
The authors declare no competing interests.

AUTHOR CONTRIBUTIONS
G.S. and M.D. conceived and planned the study. G.S., C.H.H., and M.D. planned the experiments. C.H.H. and M.D. supervised the work. G.S. performed initial synthetic work and characterization and completed the structural investigation. G.C., with assistance from I.S., performed the final synthetic work and material characterization. K.N.L. performed the DFT calculations. G.S., G.C., and M.D. wrote the initial draft, which was revised and edited by all authors.

ORCID
Géraldine Chanteux https://orcid.org/0000-0001-5655-0536
Mircea Dincă https://orcid.org/0000-0002-1262-1264
PEER REVIEW
The peer review history for this article is available at: https://publons.com/publon/10.1111/nyas.14906.

REFERENCES

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.