
Parallel Execution
of
Logic Programs

John S. Conery

University of Oregon

Copyright c©1994 by John S. Conery

ii

For Leslie ♥

iv

Contents

List of Figures ix

Preface xi

1 Introduction 3

2 Logic Programming 7
2.1 Syntax . 8
2.2 Semantics . 12
2.3 Control . 16
2.4 Prolog . 19

2.4.1 Evaluable Predicates and Arithmetic 19
2.4.2 Higher Order Functions 21
2.4.3 The Cut Symbol . 22

2.5 Alternate Control Strategies 26
2.5.1 Selection by Number of Solutions 27
2.5.2 Selection by Number of Uninstantiated Variables . . . 28
2.5.3 Intelligent Backtracking 29
2.5.4 Coroutines . 30

2.6 Chapter Summary . 33

3 Parallelism in Logic Programs 35
3.1 Models for OR Parallelism . 37

3.1.1 Pure OR Parallelism 39
3.1.2 OR Processes . 42
3.1.3 Distributed Search . 45
3.1.4 Summary . 47

3.2 Models for AND Parallelism 48
3.2.1 Stream Parallel Models 48
3.2.2 AND Processes . 52
3.2.3 AND Parallelism in the Goal Tree 56

v

vi Contents

3.2.4 Summary . 56
3.3 Low Level Parallelism . 57
3.4 Chapter Summary . 59

4 The AND/OR Process Model 63
4.1 Oracle . 64
4.2 Messages . 65
4.3 OR Processes . 66
4.4 AND Processes . 67
4.5 Interpreter . 68
4.6 Programming Language . 70
4.7 Chapter Summary . 71

5 Parallel OR Processes 73
5.1 Operating Modes . 73
5.2 Execution . 74
5.3 Example . 76
5.4 Chapter Summary . 80

6 Parallel AND Processes 83
6.1 Ordering of Literals . 84

6.1.1 Dataflow Graphs . 85
6.1.2 The Ordering Algorithm 86
6.1.3 Examples . 88

6.2 Forward Execution . 93
6.2.1 Forward Execution Algorithm 93
6.2.2 Solution of a Deterministic Function 96

6.3 Backward Execution . 98
6.3.1 Generating Tuples of Terms 98
6.3.2 Definitions for Backward Execution 99
6.3.3 The Backward Execution Algorithm 100

6.4 Detailed Example . 104
6.4.1 Ordering . 104
6.4.2 Forward Execution . 106
6.4.3 Backward Execution 107
6.4.4 Additional Solutions 108

6.5 Discussion . 111
6.5.1 Relative Order of Incoming Messages 111
6.5.2 Definition of Candidate Set 112
6.5.3 Result Cache . 113
6.5.4 Infinite Domains . 115
6.5.5 Multisets of Results 116

6.6 Chapter Summary . 118

Contents vii

7 Implementation 119
7.1 Overview of the Interpreter 120
7.2 Parallel AND Processes . 121
7.3 Process Allocation . 126
7.4 Growth Control . 128

7.4.1 Conditional Expressions 128
7.4.2 Process Priorities . 129
7.4.3 Message Protocols . 129
7.4.4 Secondary Memory . 130

7.5 Summary . 131

Bibliography 133

Index 143

viii Contents

List of Figures

1.1 Layers of Abstraction . 4

2.1 Examples of Clauses . 9
2.2 An Example of a Logic Program 10
2.3 Examples of Resolution . 15
2.4 Goal Tree . 18
2.5 Examples of is in DEC-10 Prolog 20
2.6 The Effect of “Cut” . 23
2.7 Coroutine vs. Depth-First Control 31

3.1 AND Parallelism vs. OR Parallelism 36
3.2 Environment Stack for Sequential Prolog 38
3.3 Environment Stack in OR-Parallel System 39
3.4 OR Processes . 42
3.5 Search Parallelism . 45
3.6 A Goal Statement as a Network of Processes 49
3.7 AND Processes . 53
3.8 Duplicate Computations in a Goal Tree 60
3.9 Combined AND and OR Parallelism 61

4.1 Sample Interpreter Output 69

5.1 Modes of an OR Process . 74
5.2 Starting an OR Process . 75
5.3 State Transitions of an OR Process 77
5.4 States of a Parallel OR Process 78

6.1 The Literal Ordering Algorithm 87
6.2 Graph for Disjoint Subgoals 89
6.3 Graph for Shared Variables 90
6.4 Graph for Deterministic Function 91
6.5 Graph for Map Coloring . 92

ix

x List of Figures

6.6 Forward Execution Algorithm 94
6.7 Sample Graph Reductions . 95
6.8 Program for Matrix Multiplication 97
6.9 Backward Execution Algorithm 101
6.10 Maintaining a Cache of Results 103
6.11 Graph for Detailed Example 105
6.12 States of a Parallel AND Process 106
6.13 Candidate Sets . 112
6.14 The Effect of Goal Caching on Recomputation 114

7.1 Set Operations in Backward Execution 122
7.2 Map Coloring Program . 125

Preface

This book is an updated version of my Ph.D. dissertation, The AND/OR
Process Model for Parallel Interpretation of Logic Programs. The three years
since that paper was finished (or so I thought then) have seen quite a bit of
work in the area of parallel execution models and programming languages
for logic programs. A quick glance at the bibliography here shows roughly
50 papers on these topics, 40 of which were published after 1983. The main
difference between the book and the dissertation is the updated survey of
related work.

One of the appendices in the dissertation was an overview of a Prolog
implementation of an interpreter based on the AND/OR Process Model, a
simulator I used to get some preliminary measurements of parallelism in
logic programs. In the last three years I have been involved with three other
implementations. One was written in C and is now being installed on a
small multiprocessor at the University of Oregon. Most of the programming
of this interpreter was done by Nitin More under my direction for his M.S.
project. The other two, one written in Multilisp and the other in Modula-2,
are more limited, intended to test ideas about implementing specific aspects
of the model. Instead of an appendix describing one interpreter, this book
has more detail about implementation included in Chapters 5 through 7,
based on a combination of ideas from the four interpreters.

One of the implementation methods is an algorithm for generating mul-
tiple results in nondeterministic programs during parallel execution. The
algorithm in the dissertation had a flaw, in that it fails to generate all pos-
sible results in certain situations. The flaw was first pointed out to me by
Jung-Herng Chang. Also, N. S. Woo and K-M Choe were kind enough to
send me a preprint of their improved algorithm. The algorithm presented
here in Chapter 6 does not have the same flaw. It was developed in the con-
text of the Modula-2 implementation of parallel AND processes, and differs
from the other two in several respects.

Other than the updated survey and the incorporation of recent implemen-
tation methods into the main text, and some minor changes in presentation
that will hopefully make some topics more clear, this work is basically the

xi

xii List of Figures

same as the dissertation.
I would again like to thank my Ph.D. advisor, Dennis Kibler, for his out-

standing support and encouragement during my career as a graduate student.
Also, I still remember the thoughtful comments of Bruce Porter, Paul Morris,
Jim Neighbors, and Steve Fickas. More recently, Paul Bloch, Dave Meyer,
Nitin More, Don Pate, and Tsyuoshi Shinogi have all made contributions to
the continuing project and the book. I have also benefited from my associa-
tion with Al Davis and his group at Schlumberger Palo Alto Research, Gary
Lindstrom, and Doug DeGroot. In fact, Doug is mostly responsible for the
existence of this book. The Department of Computer and Information Sci-
ence at the University of Oregon provided the resources to format and print
the laserscript and to carry out the research described in the last chapter.

Finally, I would like to express my appreciation to my wife Leslie; her
love, patience, support, and interest have made this task much easier than it
otherwise would have been.

JC

Eugene, Oregon
August, 1986

Parallel Execution
of
Logic Programs

2 List of Figures

Chapter 1

Introduction

The past few years have seen an explosion of interest in the field of logic
programming. An indication of the interest is attendance at meetings of
researchers in the field. Initially, small annual workshops, such as those held
at Debrecen, Hungary in 1980 and Syracuse, New York in 1981, were sufficient
to disseminate the latest results. Five years later, in the summer of 1986, two
major international conferences are being held, with more than 100 different
papers submitted to each. In addition, two journals are devoted exclusively
to logic programming, and journals for artificial intelligence, programming
languages, and computer architecture regularly feature articles related to
logic programming.

Much of the current research involves techniques for implementing logic
programming languages, such as Prolog. One of the attractions of logic
programming is the clean separation of semantics and control. It is easy
to separate specification of what a program should compute from how an
implementation can efficiently compute it. Thus, even though early imple-
mentations were quite inefficient compared to conventional programming lan-
guages, there has been the promise of more efficient implementation, since it
is possible to experiment with different implementation techniques without
violating the semantics. This experimentation has taken the form of inves-
tigating the effect of representations such as “structure sharing” on the use
of memory, more efficient unification algorithms, virtual machine instruction
sets, and alternative control strategies.

The major advantage of the separation of semantics from control, how-
ever, is the potential for parallelism. When it is clear what the final result
of a computation has to be, and that any of a number of different sequences
of operations will lead to the result, it is reasonable to expect to do some of
the operations in parallel. Such is the case with logic programs.

The subject of this book is the AND/OR Process Model, an abstract

3

4 Introduction

Theory A model of computation and semantics of pro-
grams in the model.

Operation Abstract interpreter; rules for performing steps of
a computation and ordering the steps.

Implementation Concrete interpreter, specifying representation of
programs and data.

Machine Low level implementation; hardware components,
interconnection, process distribution.

The AND/OR Process Model is a specification at the Operation layer in
this hierarchy. It is an operational semantics for interpreting logic programs,
defining a framework for implementation of a parallel interpreter.

Figure 1.1: Layers of Abstraction

model for parallel execution of logic programs. The goal has been the defi-
nition of a framework for implementing parallel interpreters. The long range
goal is the design of a large scale parallel processor. The research presented
here provides an intermediate level of abstraction between hardware and
semantics, a set of requirements for a parallel interpreter running on a mul-
tiprocessor architecture (Figure 1.1).

The AND/OR Process Model is not a model for parallel execution of
Prolog. Prolog is a high level programming language based on logic, but a
Prolog program is not a logic program, in the same sense in which a Common
Lisp program is not a “pure Lisp” program. Prolog is one example of a system
at the Implementation level of the hierarchy of Figure 1.1. It has many
extensions to the formalism of logic programming that make programming
more convenient. Many of the data representations and rules for executing
Prolog programs are defined in terms of sequential machines. In the top-down
design of a parallel machine starting from the most abstract levels, it would
be a mistake to include all of the extensions of Prolog in the parallel model.
Alternatively, one should define mechanisms for parallel control of logic, and
then implement the practical extensions to the formalism in terms of those
mechanisms. As a concrete example, the formalism of logic programming
does not provide for conditional expressions. Conditional expressions are
implemented in Prolog, but the definition is in terms of “cut,” a control
operator defined in terms of sequential search. Conditional expressions will be
defined for the AND/OR Process Model in Chapter 7, using the mechanisms

5

of the parallel control instead Prolog’s cut operation.
Important principles for an abstract parallel interpreter are accuracy,

scalability, and modularity. Accuracy means the abstract interpreter should
be as faithful as possible to the formal semantics of the model of computation.
As always in a hierarchy of abstractions, compromises are made as lower levels
implement concepts of the higher levels. A good example in the context of
logic programming is a compromise made by the incompleteness of Prolog.
There are cases where a Prolog interpreter will fail to compute a result for
an input expression that has a defined meaning according to the semantics of
logic programming. Accuracy in this context means the abstract interpreter
should provide as many of the defined results as possible.

Scalability means the abstract interpreter can be implemented on a wide
range of multiprocessors, able to exploit as much parallelism as possible given
the number of processors and the size of an input problem. A classic exam-
ple of non-scalable parallelism is a pipelined floating point unit in a vector
processor. The number of independent stages of a floating point operation
determines the amount of parallelism. The same factor of speedup is obtained
in each execution, independent of the length of input vectors. If operations
on vectors of length 100 are five times as fast, operations on vectors of length
10,000 will also be five times as fast. In a dataflow system, however, it is
possible to exploit an amount of parallelism proportional to the size of the
input problem. When multiplying two n × n matrices, O(n2) parallel tasks
are created. At the level of the abstract interpreter, the speedup for 10× 10
matrices is a factor of 100, and for 20× 20 matrices the speedup is a factor
of 400.

Modularity at the level of the abstract interpreter means parallel activi-
ties share a minimum of data, preferably communicating by messages instead
of shared variables. Modularity will be important when the abstract inter-
preter is implemented on a multiprocessor. One of the major technological
barriers for multiprocessors is the problem of memory access. When more
than a few processors access the same memory, contention introduces delays.
If all operations require access to a common memory, performance degrades
as more processors are built into the system. However, if processors primarily
access independent local memories, this performance bottleneck is avoided in
large systems. By building modularity into the abstract interpreter, we are
confident it can later be implemented on an independent memory multipro-
cessor.

The AND/OR Process Model is an abstract parallel interpreter based on
the principles of accuracy, scalability, and modularity. It can be viewed as
an Actors system, where numerous objects communicate via messages and
update local state information in asynchronous operations. The local states
of objects replace the centralized binding environment usually created in the
execution of Prolog programs, and the asynchronous operation of the objects

6 Introduction

replaces the sequential steps of Prolog interpreters.
This book starts with a complete introduction to logic programming.

The purpose of this chapter is to describe the Theory level of the hierarchy
of Figure 1.1, defining the model of computation and the formal semantics
of logic programs. It provides a reference point for understanding aspects
of the AND/OR Process Model. The chapter also contains a description of
Prolog as an example of an interpreter based on the formalism.

The following chapter is a survey of different models of parallel inter-
preters. Some of the projects described here are, like the AND/OR Process
Model, abstract models, systems useful for analyzing potential sources of
parallelism in logic programming languages. Others are implementations of
parallel logic programming languages at the lower two levels of the hierarchy.

The next three chapters describe the AND/OR Process Model in detail.
An abstract interpreter, written in Prolog, was first used to test the accuracy
of the model. More recently other interpreters have been written in order to
test the model on a small scale multiprocessor. Aspects of these interpreters
are described in Chapter 7.

Logic programming languages, like languages based on applicative mod-
els, are often inefficient in comparison to traditional languages when imple-
mented on von Neumann architectures. One hope for more efficient imple-
mentation lies in parallel architectures. In fact, some argue the opposite side
of the coin: languages based on non von Neumann models provide the key to
the acceptance of large-scale parallel machines, due to the inherent difficulties
of exploiting parallelism in von Neumann languages.

The philosophy behind the research presented here is that parallel archi-
tectures should be designed in a “top-down” fashion, proceeding from the
formal model of computation to actual hardware. The abstract interpreter
is an important step in this process, providing a set of design principles and
specifications for the lower levels. Implementation techniques for an effi-
cient concrete interpreter based on the specifications of the AND/OR Pro-
cess Model are the subject of the last chapter of this book. Efficient parallel
machines based on the interpreters will be the subject of future research.

Chapter 2

Logic Programming

The phrase logic programming refers to the use of formulas of first order pred-
icate logic as statements of a programming language. The first logic program-
ming system was developed by Colmerauer and his colleagues at Marseille,
growing out of a project to implement an automatic theorem prover. Since
then, the semantics of logic as a programming language have been formal-
ized, and there have been a number of implementations of Prolog, a high
level language that extends the formalism of logic programming in ways that
make it more useful and efficient for solving practical problems.

This chapter is an extensive discussion of logic programming and Prolog.
It starts with the definition of the syntax and formal semantics of logic pro-
grams. Next is a description of the standard sequential control strategy used
by most interpreters, including Prolog, followed by a detailed description of
the Prolog language, with its extensions to the formalism, and a discussion
of alternative (but still single processor) control strategies used in various
Prolog systems.

The discussion of Prolog is included here for three reasons. First, it
reinforces the notion that logic programming is a theoretical foundation, the
model of computation at the Theory layer of the scale in Figure 1.1. Prolog
is one example of a system at the Operation layer, and the AND/OR Process
Model is another. The intent here is to clarify what is an essential part of the
formalism and what is part of an abstract interpreter based on the formalism.

Second, the discussion is offered in support of a claim made in the in-
troduction, that it is relatively easy to separate semantics from control in
systems based on logic programming. The presentation of the standard se-
quential control followed by numerous examples of alternative but still seman-
tically correct control strategies provides a good introduction to the survey
of parallel control in the next chapter.

Finally, Prolog provides an example of the kinds of extensions to the

7

8 Logic Programming

formalism that are accepted as useful. The AND/OR Process Model has some
of the same extensions, such as allowing program clauses to be operated on
as data. Other extensions will be defined in terms of the underlying control
primitives of the parallel model.

2.1 Syntax

The basic data objects of logic programs are terms. The simplest type of
term is an atom. As in FP [1], atoms stand for themselves, and have no
further meaning, i.e. there is no notion of binding an atom to a value as
there is in Lisp.

Complex terms are built from an atomic function symbol and any number
of arguments, which can be any type of term. Complex terms are usually
written using prefix notation; thus the term with function symbol f and
arguments x and y is written f(x,y). The function symbol is also known
as the functor or principle functor of the term. A complex term with n
arguments is said to be an n-ary term, or to be of arity n. For the sake of
regularity, atoms are considered to be complex terms of arity 0.

The third type of term is the variable. Syntactically, variables are dis-
tinguished from atoms by starting the names of variables with upper case
letters: A and B are variables, but a and b are atoms. During execution,
variables will take values. We say the variable is replaced by, or becomes
bound to, or is instantiated to another term. The other term becomes the
value of the variable.

Logic programming languages are single assignment languages. Once a
variable takes a value in a computation, it keeps that value. If a variable
occurs in many places, every occurrence takes the same value at the same
time. So, for example, if the variable X in the term p(X,Y,a,X) is bound to
the term f(a), the term becomes p(f(a),Y,a,f(a)).

The smallest unit of a program is a literal. Syntactically a literal is the
same as a non-variable term, having a function symbol and zero or more
terms as arguments. Literals are combined into clauses, which have two
components, a head and a body separated by a left arrow. The head can
have at most one literal; the body can have zero or more literals. A period
follows the last literal in the body. There are four different types of clauses,
depending on the number of literals in the head and body. The types of
clauses and examples of each are shown in Figure 2.1.

The text of a program usually consists of implications and assertions
only. Goal statements and null clauses are derived by an interpreter as it
executes a program. Assertions are also called unit clauses, and implications
are nonunit clauses. The terminology of problem solving is sometimes used
when describing the execution of a logic program. A clause may be called a

Syntax 9

Clause Type Example

Implication p ← q ∧ r. One head literal, one or
more body literals.

Assertion p. One head literal, zero body
literals. The implication
sign is omitted in this case.

Goal Statement ← q ∧ r. No head literal, one or
more body literals.

Null clause 2 No literals in head or body.

The four types of clauses in a logic program. Assertions are also known as
unit clauses. Implications and assertions form the text of a program, goal
statements and null clauses are created during execution of the program.

Figure 2.1: Examples of Clauses

goal, and literals in the right hand side may be subgoals.
Finally, the largest syntactic unit in a logic program is a procedure. A

procedure is a set of clauses, all of which have head literals with the same
function symbol and same arity. A literal p(X) in a goal statement or the
body of a clause is a call to procedure p.

A simple logic program used for examples throughout the book is given
in Figure 2.2. This program has seven procedures. Six are simply sets of
assertions. The seventh, paper, is defined by two implications and one as-
sertion.

User interaction with a logic programming system is similar to interaction
with Lisp. A program is entered into the system, and the user then types
expressions to be evaluated. The expressions typed in by the user are goal
statements; evaluation consists of proving the goal statement with an auto-
matic proof procedure and printing the bindings made for variables of the
goal during the proof. We will sometimes refer to the initial goal statement
as a query. The rules for evaluating logic expressions – the semantics of the
language – will be given in the next section. The remainder of this section is
an overview of the applications that can be written in this style.

One application, exemplified by the program in Figure 2.2, is database
processing. The natural connection between logic programs and relational
databases has been recognized for a long time [24, 35, 93]. In this application,
tuples of a relation are represented by assertions in the logic program, where
the functor of the assertion is the name of the relation. The database in
Figure 2.2 is written in the style advocated by Deliyanni and Kowalski [26].
All information is stored in binary relations, where the first term in an as-

10 Logic Programming

paper(P,D,I) ← date(P,D) ∧ author(P,A) ∧ loc(A,I,D).

paper(P,D,I) ← tr(P,I) ∧ date(P,D).

paper(xform,1978,uci).

author(fp,backus). date(fp,1978).

author(df,arvind). date(df,1978).

author(eft,kling). date(eft,1978).

author(pro,pereira). date(pro,1978).

author(sem,vanemden). date(sem,1976).

author(db,warren). date(db,1981).

author(sasl,turner). date(sasl,1979).

author(xform,standish).

title(db,efficient_processing_of_interactive...).

title(df,an_asynchronous_programming_language...).

title(eft,value_conflicts_and_social_choice...).

title(fp,can_programming_be_liberated...).

title(pro,dec_10_prolog_user_manual).

title(sasl,a_new_implementation_technique...).

title(sem,the_semantics_of_predicate_logic...).

title(xform,irvine_program_transformation_catalog).

loc(arvind,mit,1980). journal(fp,cacm).

loc(backus,ibm,1978). journal(sasl,spe).

loc(kling,uci,1978). journal(kling,cacm).

loc(pereira,lisbon,1978). journal(sem,jacm).

loc(vanemden,waterloo,1980).

loc(turner,kent,1981). tr(db,edinburgh).

loc(warren,edinburgh,1977). tr(df,uci).

loc(warren,sri,1982).

In this program, most binary literals p(X,Y) stand for “the p of X is Y,” e.g.
author(fp,backus) stands for “the author of the FP paper is Backus.”

Figure 2.2: An Example of a Logic Program

Syntax 11

sertion is a unique key identifying an object of the domain modeled by the
database. In the example program, the assertion author(db,warren) repre-
sents the fact that David H. D. Warren wrote a paper identified as db, and
date(db,1981) says the date of the same paper is 1981.

Implications represent “derived data” – information not explicitly stored
in a database, but computable from the data and programs stored in the
system. Some examples of queries to this database, using the paradigm of
typing a goal statement and then having the system prove the goal and print
the bindings of the variables, are:

← author(X,warren).

This goal is “is there a value for X such that author(X,warren) is
true?” In other words, is there a paper written by Warren? The system
can prove this, and in doing so it binds X to the term db and prints it.

← author(db,X).

Similar to the above, but asks “who wrote the paper identified by the
key db?” The system will print warren.

← author(X,warren) ∧ date(X,D).

“When did Warren write a paper?” This query is a conjunction of two
goals; the system must prove both in order to solve the goal statement,
and the value of X has to be the same in each literal. The proof succeeds,
with X = db and D = 1981.

It is possible to write a set of clauses to implement a function. An n-ary
function f can be represented in a logic program by an (n+1)-ary procedure
with functor f. In a call to f, n of the arguments will be bound, provid-
ing the n input values to the function. The remaining argument position in
the call is an unbound variable. As a result of the call, the variable will be
bound to the value of the function. For example, consider the addition func-
tion of integer arithmetic. A procedure call of the form sum(a,b,Z) means
“add the numbers represented by terms a and b and bind Z to the result.”
Techniques for representing numbers by terms and performing arithmetic are
discussed later, when we will see how it is done in Prolog. When represented
as relations, functions are invertible, i.e. the relation represents not only the
function but also its inverse. For example, given a set of assertions of the
form sqr(X,Y), where each Y value is the square of the corresponding X, the
square of 3 can be computed with the call sqr(3,S), and the square root of
9 computed with the call sqr(S,9).

Deterministic goals have exactly one output for each distinct combination
of inputs. If there is more than one solution, the goal is nondeterministic.
The first example above is nondeterministic if the database has many papers

12 Logic Programming

written by Warren. Some systems print all possible answers to a query, while
others print one result and wait for the user to ask for additional solutions.

Another natural application is parsing of sentences [70, 92]. The opera-
tions required to prove an implication are similar to those used to reduce a
string using a grammar. In this application, the head of a clause corresponds
to a nonterminal symbol, and the literals in the body correspond to the right
hand side of the rule. An example of a top-level goal in this application is

← sentence("time flies",[],P).

This goal is a request to the system to prove the string is a sentence in the
grammar. If the proof is successful, the system will bind the variable P to
the parse tree for the sentence. The transformation from grammar rule to
executable clause is very simple; the DEC-10 Prolog system has a built-in
“read macro” to transform grammar rules into clauses. A grammar written
as a logic program is effectively a parser for the language it describes.

Another application area is artificial intelligence. Numerous papers have
been written on the effectiveness of Prolog for writing expert systems and
other AI programs. Some of the advantages of Prolog for this style of pro-
gramming are due to features it has in common with Lisp, Planner, and other
AI languages; other features are unique to logic programming languages. A
good overview of the components of an expert system and some opinions on
how Prolog and related languages provide support for implementing these
components can be found in a paper by Subrahmanyam [80].

2.2 Semantics

Van Emden and Kowalski were the first to assign a formal semantics to logic
programs [32]. The denotation D(p) of an n-ary procedure p is a set of n-
tuples of terms. This definition is similar to the definition of a relation, and
in fact the denotation of a procedure is often called a relation. There are
three ways of defining D; all three methods define the same set.

D1(p), the operational semantics of p, is defined to be the set of all tuples
<t1 . . .tn> such that the predicate p(t1 . . . tn) is provable, given the clauses
of the program as axioms. Implementations of logic programming systems
use a constructive proof procedure to create the tuples of D1. An input goal
statement, such as

← p(X,a).

is a request to prove p(X,a). A constructive proof not only satisfies the
request, it generates a set of terms T such that p(xi,a) is provable for any
xi belonging to T . In response to the above query, an interpreter would
construct

Semantics 13

{<xi, a > | xi ∈ T}

This is the subset of D1(p) where the atom a is the second term in the tuple.

In the model-theoretic semantics, the denotation D2(p) is the set of all
n-tuples <t1 . . . tn> such that p(t1 . . . tn) is true with respect to a Herbrand
model for the program. The fixed point semantics D3(p) is derived from the
program through a transformation that maps clauses into ground clauses,
from which tuples of ground terms are formed. The definition of the Herbrand
model, the nature of the transformation, and a proof that D1 ≡ D2 ≡ D3

can be found in the article by van Emden and Kowalski [32].
The operational semantics of a logic program is determined by the proof

procedure embodied in the interpreter. For most logic programming systems,
the proof procedure is based on resolution, a deductive inference method de-
fined for formulas of first order predicate calculus written as clauses [76]. One
step of the interpreter corresponds to one logical inference. The remainder of
this section is a discussion of resolution; the next section takes up the subject
of controlling the order of the inferences in an interpretation.

The formal definition of a clause is that it is a disjunction of literals. All
variables in a clause are universally quantified, and the scope is restricted to
the clause itself. Literals as we have defined them so far are positive literals.
The negation of a literal p(X), written ¬p(X), is a negative literal. The
resolution rule states that from two clauses

p1 ∨ . . . ∨ pn−1 ∨ q ∨ pn+1 . . .
r1 ∨ . . . ∨ rm−1 ∨ ¬q ∨ rm+1 . . .

each containing a literal q, positive in one clause and negative in the other,
one can infer the new clause

p1 ∨ . . . ∨ pn−1 ∨ pn+1 ∨ . . . ∨ r1 ∨ . . . ∨ rm−1 ∨ rm+1 ∨ . . .

The derived clause, known as a resolvent, contains copies of every literal from
the original two clauses except q and ¬q.

As a prerequisite to forming the resolvent, the theorem prover has to
attempt to unify the literals q and ¬q. Unification is a pattern matching
operation. Two literals are unifiable if they are syntactically identical, or if
variables in either can be replaced by terms in order to make them identical.
The literals are identical if they have the same function symbol, the same
arity, and the corresponding argument terms are identical. When unifying
terms, a variable can be replaced by any other term, including another vari-
able, as long as the replacement is consistent throughout the two literals. For
example, q(f(a)) and ¬q(X) can be unified, since when X replaces f(a) in
q(X) the literals are both q(f(a)). The two input clauses must not have any
variables in common. Since the scope of a variable is the clause that contains

14 Logic Programming

it, it is an easy matter to rename the variables of one of the inputs so there
are no name conflicts.

Unification is the operation that binds variables during a proof. The set
of bindings created during a unification is known as a substitution. The
notation {X/a} refers to a substitution where the variable X is bound to
the term a. Substitutions are often identified by lower case Greek letters,
such as θ. Cθ is the clause obtained by applying substitution θ to clause
C, i.e. replacing every variable of C on the left side of a binding in θ with
the corresponding right side. After unifying the two literals, the theorem
prover applies the substitution generated during unification to the remaining
occurrences of the variables in the two input clauses in order to form the
resolvent.

Summarizing the steps, in order to resolve two input clauses, find a literal
that is positive in one clause and negative in the other; unify the literals; form
a new clause by copying all other literals from both inputs, and apply the
substitution to the new clause. As an example, given the two clauses

p(X,1)∨ q(Y,X)∨ r(X,Z)
¬p(0,W) ∨ s(W)

it is possible to unify p(X,a) and ¬p(0,W) with substitution {W/1, X/0}. The
resolvent is

q(Y,0)∨ r(0,Z)∨ s(1)

Since the scope of a variable is the clause that contains it, the effect of a
binding is confined to the resolvent; variables in the input clauses are not
modified. Figure 2.3 shows many more examples of successful and unsuc-
cessful resolutions.

A Horn clause is a clause containing at most one positive literal. Since

P ∨ (¬Q ∨ ¬R) ≡ P ← Q ∧R

a Horn clause such as

¬p(a,b) ∨ q(X) ∨ ¬r(X,f(a))

can be written as

q(X)← p(a,b)∧ r(X,f(a))

which brings us back to some familiar syntax. The head of a clause written in
this syntax is a positive literal, and literals in the body are negative literals.
When written this way, it is also easy to see that resolution can be considered
a generalization of the modus ponens rule of propositional logic: from A→ B
and A it is possible to infer B. Stated another way, if we know A→ B and
we want to prove B, we can do it by proving A.

Semantics 15

Successful Resolutions

Input Clauses Resolvent Substitution

p(X) ∨ q(X) ¬p(a) ∨ r(Y) q(a) ∨ r(Y) {X/a}
p(X,a) ∨ q(X) ¬p(b,Y) ∨ r(Y) q(b) ∨ r(a) {X/b, Y/a}
p(X) ¬p(1) 2 {X/1}
p(X) ∨ q(X) ¬p(f(a,B)) q(f(a,B)) {X/f(a,B)}
p(X) ∨ q(X) ¬p(A) ∨ r(A) q(X) ∨ r(X) {A/X}
p(X) ∨ q(X) ¬p(A) ∨ r(X)† q(X) ∨ r(X2) {A/X}

† Note: X in second clause renamed X2 before unification.

Unsuccessful Resolutions

Input Clauses Reason for Failure

p(X) ∨ q(X) p(X) ∨ r(Y) must unify a positive literal
with a negative literal

p(X) ∨ q(Y) ¬r(X) ∨ s(Y) no predicate symbols match
p(X,a) ∨ q(X) ¬p(b) predicate symbols match,

but literals do not have same arity
p(a) ¬p(b) arguments not unifiable

Figure 2.3: Examples of Resolution

When all clauses are restricted to Horn clauses, a theorem prover knows
that in order to perform a resolution, a literal from the body of one input
clause can only be used in a unification with a literal in the head of another
clause. This restriction will greatly simplify the control structure used in the
proofs underlying the execution of logic programs.

A useful mnemonic for reading clauses is to move the implied universal
quantifier of any variables that occur only in the body to the right of the
implication, turning them into existential quantifiers. An implication

p(X,Z)← q(X,Y)∧ r(Y,Z)

is the same as

∀X∀Z : p(X,Z)← ∃Y : q(X,Y)∧ r(Y,Z)

which is read “for all X and Z, p(X,Z) if there exists a Y such that q(X,Y)

and r(Y,Z).”

16 Logic Programming

Often a unifying substitution requires the replacement of one variable by
another, as in the following example:

p(1,X)∨ q(1,X)
¬q(1,Y) ∨ r(2,Y)

When unifying two unbound variables, one is bound to the other. Formally,
it does not matter which one is bound. Either {X/Y} or {Y/X} is a unifying
substitution in this case. The resolvent has one variable; one of these substi-
tutions names it X and the other names it Y. Either is acceptable because the
scope of the name is the resolvent, and neither name conflicts with variables
from the original clause. As a practical matter, however, the handling of
variable-variable bindings is important in both sequential and parallel logic
programming systems. The representation of these bindings will have an
impact on the efficiency of unification, and thus the entire system.

2.3 Control

A complete resolution proof of a clause C with respect to a set of axioms A is
the derivation of the null clause from {¬C ∪A}. In other words, it is a proof
by contradiction: negate C and show the negation leads to a contradiction.
Unification and substitution make the proof a constructive proof. After the
null clause has been derived, it is possible to construct terms for the variables
of the original clause by using the substitutions performed during the proof.

In a logic programming system, the set of axioms is the program, and the
clause to prove is the goal statement typed in by the user. Since program
clauses are Horn clauses, the heads of clauses are positive literals, and goal
statements and clause bodies consist of all negative literals. An execution
step consists of selecting a goal from a goal statement, finding a clause with
a matching head, and constructing a new goal statement through resolution.
The control component of a logic programming system decides which literal in
a goal statement will be used in the next resolution and the program clause it
will be resolved with. The simplest and most commonly used control strategy
is presented in this section.

The basic steps in deriving goal statement Gi+1 from the current goal Gi

are as follows.

1. Select a literal L from Gi.

2. Find a clause C in the program such that the head of C can potentially
be unified with L.

3. Rename the variables in C so there are no variables in common with
Gi.

Control 17

4. Do the unification, in the process creating a substitution θ. If unifica-
tion fails, the proof fails, otherwise continue.

5. Create goal Gi+1 by replacing L in Gi with the body of C and applying
θ.

When the selected clause is a unit clause, the body does not have any
literals, so Gi+1 will have one less literal than Gi. Gi+1 will be the null clause
when Gi contains exactly one literal, and this literal is resolved with a unit
clause.

The control decisions in this procedure are in steps 1 and 2. In step 1
we must choose a literal to resolve. The standard control mechanism always
selects the first (leftmost) literal in the goal statement. In step 2 we find a
candidate for unification. The standard technique is to search the program
from top to bottom, using the clauses in the order they occur in the program.

Another part of the standard control mechanism deals with failed unifica-
tions. Instead of terminating the entire proof, the interpreter can backtrack
to a previous choice and try another alternative. The standard control keeps
a record of choices made in step 2, and when a failure occurs it backs up and
tries another clause if one exists. Note that backing up requires the unbind-
ing of variables; all bindings made since the last choice point are undone,
resetting the state of the computation back to what it would have been if the
new clause was chosen in the first place.

A goal tree is a tree where each node is a goal statement. Immediate
descendants of a node N are goal statements derivable from N in one inference
step. Steps in the execution of a logic program can be represented as a goal
tree: the root of the tree is the goal typed in by the user, interior nodes
are the intermediate goal statements, and the leaves of the tree are either
null clauses or failure nodes. Figure 2.4 shows the goal tree formed from the
initial goal

← paper(P,1978,uci) ∧ title(P,T).

and the program of Figure 2.2, using the standard control.
The standard control strategy corresponds to a depth-first search of a

goal tree. When the interpreter reaches a fail node, it backtracks to the most
recent choice point. Note that if the goal tree contains an infinite branch,
the standard control will not find all occurrences of the null clause; it will
miss those to the right of the infinite branch.

A goal tree is not the easiest way to visualize execution of a logic program.
It is introduced here because it represents explicitly the individual steps of
the execution in the order they normally occur. It also presents a useful
framework for describing different forms of parallel execution. The execution
of a sequential logic program is easily explained in terms of the text of a

18 Logic Programming

paper(P,1978,uci)
title(P,T)

date(P,1978)
author(P,A)

loc(A,uci,1978)
title(P,T)

title(xform,T)
*

tr(P,uci)
date(P,1978)

title(P,T)

author(fp,A)
loc(A,uci,1978)

title(fp,T)

author(df,A)
loc(A,uci,1978)

title(df,T)

author(eft,A)
loc(A,uci,1978)

title(eft,T)

author(pro,A)
loc(A,uci,1978)

title(pro,T)

date(df,1978)
title(df,T)

loc(backus,
uci,1978)
title(fp,T)

loc(arvind,
uci,1978)
title(df,T)

loc(kling,
uci,1978)

title(eft,T)

loc(pereira,
uci,1978)

title(pro,T)

title(df,T)
*

title(eft,T)
*

��������

HHHHHHHH

XXXXXXXXXXXXXXX

��������

HHHHHHHH

XXXXXXXXXXXXXXX

Goal tree generated during solution of paper(P,1978,uci) ∧ title(P,T).
Only the first literal within a node is used to generate descendant nodes.
Leaf nodes marked with an asterisk represent successful branches; the nodes
derived from these contain the null clause. Other leaf nodes are failure nodes.

Figure 2.4: Goal Tree

Prolog 19

program. The goals in a goal statement are solved in order, from left to right.
A goal is solved by calling a procedure for the literal. Within a procedure,
clauses are tried from top to bottom. If the head of a clause unifies with
the goal literal, the unifying substitution is applied to the body of the clause
and the goals in the body are solved from left to right. When the last
goal is solved, the interpreter returns to the calling goal statement to solve
the remaining goals. A more appropriate tree structure for visualizing the
normal order of solution of goals might be an AND/OR tree, but explaining
backtracking via an AND/OR tree is often difficult.

2.4 Prolog

The version of Prolog described here is DEC-10 Prolog [72]. This was one of
the first implementations of the language, and certainly the most influential.
It introduced the “Edinburgh syntax” and a set of built-in operations used
in most other versions of the language.

The syntax of Prolog is similar to the syntax of pure logic programs used
so far. The differences are:

• The implication symbol is :- instead of ←, and literals in the body of
a clause are separated by commas, not the logic symbol ∧.

• Lisp-like lists are allowed as data structures. Lists are enclosed in
square brackets. The empty list is [], and the list with A as first element
and B as the tail is written [A|B]. Lists are complex terms according
to the definitions of Section 2.1: [a,b,c] is simply shorthand for the
term .(a,.(b,.(c,[]))), which has a period for the function symbol.

• It is possible to use infix notation for some terms and literals. For
example, the term +(X,Y) can be written X+Y. There is a predefined
set of infix functors and their precedence, and the set can be extended
by the programmer.

Throughout the remainder of the book, we will continue to use the impli-
cation and conjunction symbols of logic in pure logic programs. If :- is used
in a clause, it is because there is some reason to emphasize the fact that it is
a Prolog clause as opposed to a logic program clause.

2.4.1 Evaluable Predicates and Arithmetic

In an earlier section, sqr(X,Y)was given as an example of a binary relation to
implement the function y = x2. D(sqr) is an infinite set of tuples. Within the
formalism of logic programming, there are two methods for doing arithmetic
in cases such as this. The relation can be given explicitly, as a set of assertions

20 Logic Programming

:- X is 2+1. The expression is evaluated to 3,
and X is unified with 3, thus bind-
ing X to 3.

:- 3 is 2+1. Since the value of the expression
unifies with the constant 3, the goal
succeeds.

:- Z is (2*3)+(4*5). Z is bound to 26.
:- 5 is 2+1. Fails, since 5 is not unifiable with

3.
:- X is 3*2, Y is X+3. Binds Y to 9.
:- 9 is X+3. Fails, since the second argument

must be a ground term (a term con-
taining no unbound variables).

Examples of goal statements in DEC-10 Prolog using the evaluable predicate
is.

Figure 2.5: Examples of is in DEC-10 Prolog

of the form sqr(a,b), and arithmetic operations will be essentially table
searches. Obviously, the entire infinite relation cannot be stored, and the
defined subset would consume a large amount of space. Alternatively, the
relation can be computed, using a set of axioms of arithmetic. For example,
the symbol 0 could represent the integer zero, the terms s(0), s(s(0)), etc.
could represent the positive integers, and we could write a set of clauses to
be used in proving every integer has a square [54].

In Prolog, arithmetic is performed by metalogical evaluable predicates
analogous to the built-in primitive functions of applicative languages. The
evaluable predicates are metalogical because arithmetic is done be escaping
from the system of resolution proofs and using another formal system, in this
case the underlying machine hardware. We use the machine for arithmetic
because it is much faster. In Prolog, numbers are a subset of the atoms, and
the evaluable predicates implementing arithmetic operations are restricted
to operating on terms representing numbers.

Arithmetic in DEC-10 Prolog is performed by the evaluable predicate
is. This is a binary predicate that can be used as an infix operator. The
second argument must be a legal arithmetic expression, constructed from the
usual operators and integer terms, and the first argument can be either an
integer or a variable. When is is called, the expression is evaluated, and the
first argument is unified with the value of the expression. Some examples of
Prolog goal statements with calls to is are in Figure 2.5.

The use of metalogical features such as evaluable predicates has an effect

Prolog 21

on the semantics of programs. Goals with a defined meaning may not be
solvable when the machine performs the operation. An example is

← 5 is X + Y.

In other words, what integers X and Y sum to 5? This goal has six solutions in
the positive integers, and all can be found if the system proves the statement
using axioms of arithmetic or searches an explicit relation for tuples with 5 as
the third element. However, the goal fails in DEC-10 Prolog when a machine
is asked to add two uninstantiated variables.

The idea that a goal will fail if certain argument positions contain unin-
stantiated variables is expressed in DEC-10 Prolog by I/O modes. Each
argument in a goal has one of three modes associated with it. In input-only
mode, the argument must be a ground term. In output-only mode, the ar-
gument must be an uninstantiated variable; it will be bound in the solution
of the goal. In the default, don’t-care, mode, arguments can be instantiated
or uninstantiated. When a Prolog procedure implements an n-ary function,
n argument positions of the predicate symbol will be input-only mode, and
the remaining argument positions can be either output-only or don’t-care.
Evaluable predicates in DEC-10 Prolog have modes for their arguments, and
users are allowed to annotate their programs with mode declarations so the
compiler can generate more efficient code. The concept of I/O modes will also
be used to order goals for parallel solution in the AND/OR Process Model.

An alternative to mode declarations is the concept of thresholds [18, 51,
99]. Addition can be performed by a ternary evaluable predicate named sum

having a threshold of two, meaning the goal is solvable if any two its three
arguments are bound to non-variable terms. For example, sum(X,3,5) is
solvable by binding X to 2. sum will fail if fewer than two arguments are
bound.

2.4.2 Higher Order Functions

DEC-10 Prolog allows implication and conjunction symbols to be used as
function symbols in complex terms. This allows higher order functions: pro-
grammers can pass clauses as parameters to procedures and define new pro-
cedures dynamically [94]. The goal

:- assert(T).

adds the term T to the program currently in the system. The opposite of
assert is retract:

:- retract(T).

finds a clause unifiable with T and then deletes it from the program.

22 Logic Programming

The evaluable predicate call is similar to the eval function of Lisp. The
goal

:- call(P).

treats the term P as if it were a goal statement, and calls the interpreter
recursively to solve it. An evaluable predicate useful in conjunction with
call is =.., which constructs terms from a list of components. The goal

:- T =.. [F|A].

succeeds if T is a term with function symbol F and argument list A. For
example, the goal

:- T =.. [author,db,warren].

unifies T with the term author(db,warren), and

:- p(X) =.. L.

unifies L with [p,X].
An example using these higher order constructs is a Prolog procedure to

implement the Lisp function mapcar:

mapcar(F,[],[]).

mapcar(F,[X1|Xn],[Y1|Yn]) :-

Goal =.. [F,X1,Y1],

call(Goal),

mapcar(F,Xn,Yn).

This procedure takes in a function symbol and list of arguments and returns
a list built from applying the functions to each element of the input list. As-
suming the existence of the procedure named sqr used in previous examples,
the goal

:- mapcar(sqr,[1,2,3,4],L)

unifies L with the list [1,4,9,16].

2.4.3 The Cut Symbol

The standard Prolog control has been described as a depth first search of a
goal tree. The cut symbol, !, allows the programmer to control the search
by pruning unwanted branches from the search tree. Cut is inserted into the
body of a clause, along with other goals. When the interpreter encounters
cut as a goal, it always succeeds. However, if the interpreter ever backtracks
to the point where it has to re-solve the cut, the goal that called the clause

Prolog 23

Initial Goal

:- p.

Program:

p :- q, r.

p :- s.

q :- a, !, b.

q :- c.

a.

c.

r.

s.

p

q, r s
*

a, !, b, r c, r

!, b, r r
*

b, r

����
HHHH

����
HHHH

This figure shows the effect of the cut symbol (!) on a depth first search.
When the cut is executed, all choice points for the head of the clause contain-
ing the cut are discarded. In this example, the head of the clause containing
the cut is q, so alternatives for q are discarded. The part of the tree in dotted
lines is not searched.

Figure 2.6: The Effect of “Cut”

containing the cut fails. The net effect is that all further solutions for literals
to the left of the cut in the clause and all clauses in the same procedure
following the clause with the cut are deleted from the goal tree.

As an example, refer to the small program in Figure 2.6, and observe
what happens when a call is made to p. The first clause for p has a body
with literals q and r, so the system starts to solve q. The first clause for q

has body

a, !, b.

The call to a succeeds, but b fails. Now the interpreter backtracks, and
encounters ! while backtracking. The head of the clause containing the cut
is q, so the call to q from p fails. The call to q was made from the first clause
for p, and the failure of q forces the interpreter to move on to the second
clause for p, where the program finally succeeds.

Common uses of the cut symbol are in finalizing choices from nonde-
terministic procedures and in the definitions of conditional expressions and
negation.

Consider this small program with two different definitions for a procedure
p:

24 Logic Programming

p1(X) :- q(X).

p2(X) :- q(X), !.

q(a).

q(b).

When solving the goal

:- p1(X), continue.

the system eventually selects the first clause for q to solve q(X), and X is
bound to a. If continue fails, the system backtracks into p1(X), q(X) is
re-solved, and X will be bound to b. In solving the goal statement

:- p2(X), continue.

the first answer, X = a, is produced as before. When the system backtracks
into p2(X) after continue fails, it encounters the cut symbol, so it does not
retry q(X) and causes p2(X) to fail. Without the cut symbol, p is nondeter-
ministic procedure, since there is more than one solution to a call to p(X).
With a cut symbol, this procedure becomes a deterministic procedure, pro-
ducing one answer and then failing when asked to produce more answers. In
general, a cut symbol as the last goal in a clause body indicates the clause and
the procedure which it is a part of are deterministic. If the clause succeeds,
it succeeds only once.

A conditional expression in a functional language has the general form

f(X) = if p(X) then g(X) else h(X)

If p(X) is true, the value of f(X) is given by g(X), otherwise it is defined
by h(X). Recall that in Prolog, n-ary functions are defined by (n+1)-ary
predicates. In Prolog, the above expression is written as two clauses:

f(X,Y) :- p(X), !, g(X,Y).

f(X,Y) :- h(X,Y).

When the function is called, for example by the goal

:- f(10,Y).

the interpreter selects the first clause for f, then calls p(10). If p(10) suc-
ceeds, the value of Y is determined by the call to g. If p(10) fails, the inter-
preter backtracks to the second clause for f, and the value of Y is computed
by the call h(10,Y).

The cut symbol is necessary for those occasions when g(X,Y) fails af-
ter p(X) succeeds. The desired control behavior is that when p(X) is true,
f(X,Y) is defined by g(X,Y); this means that if g(X,Y) fails, f(X,Y) should

Prolog 25

also fail. This situation is analogous to the definition of conditional expres-
sions in FP, where f is undefined when p is true but g is undefined. We
do not want the interpreter to backtrack to h(X,Y) when p(X) succeeds but
g(X,Y) fails. The desired behavior is enforced by the cut symbol.

Cut is commonly used with fail (a goal which always fails) to negate the
result of a call. The usual definition of not is:

not(G) :- call(G), !, fail.

not(G).

This is negation as failure, first defined by Clark [14]. Recall that an impli-
cation

p :- q, r.

is equivalent to the Horn clause

p ∨ ¬q ∨ ¬r.

and that literals of the body of a clause are actually negative literals. Thus
one cannot simply write

:- ¬p(X).

for the request “prove p(X) is false,” since a negated literal in the body of a
clause would actually be a positive literal, and by definition a goal statement
must contain only negative literals. A resolution theorem prover works for
clauses containing more the one positive literal, but the control strategies of
Prolog are based on the assumption that the head is the only positive literal
in the clause.

Negation as failure means that if one fails to prove a statement, it can be
assumed the statement is false. Operationally, an implementation of negation
as failure means that if a call to G succeeds, not(G) should fail, but if G

fails, not(G) should succeed. Referring to the above Prolog definition, when
not(G) is called, the interpreter first tries to solve G, via the goal call(G).
If this fails, then the second clause for not(G) is tried, and since this is a
unit clause, it succeeds. In other words, when G fails, not(G) succeeds.

In the other case, when call(G) succeeds, the interpreter moves on to
the cut and fail literals. Cut succeeds, and fail fails. Because the cut is
there, the interpreter does not try to solve G again, and in addition causes the
failure of not(G), the head of the clause with the cut. Thus when G succeeds,
not(G) fails.

In logic, there is a major difference between the statements “P is false” and
“P cannot be proven,” especially when higher order functions are introduced
into the system. There are also practical problems in Prolog systems that
use this definition of negation. These problems arise when the negated goal

26 Logic Programming

contains variables. Consider a procedure with only one clause, the assertion
p(t). The call p(t) will succeed, and the call p(f) will not. not(p(t)) and
not(p(f)) behave as expected – not(p(t)) fails and not(p(f)) succeeds.
But notice what happens with the goal not(p(X)): the system solves p(X)

by binding X to t, then executing cut and fail, so not(p(X)) fails. But it was
just shown that not(p(X)) succeeds when X is bound to f, so one can argue
the system should actually succeed in solving not(p(X)) by binding X to f.
Thus it is not clear at all whether not(p(X)) should succeed or fail, and if it
should succeed, how to construct the set of legal values for X – there are an
infinite number of substitutions for X to make p(X) fail. The general rule for
using negation as failure is to make sure the argument to not is a goal with
only ground terms as arguments. In spite of these shortcomings, negation
as failure is used effectively in many logic programs and logic databases [24].
Negation as failure will be defined for parallel systems, without using the cut
symbol, in Chapter 4.

2.5 Alternate Control Strategies

Control in a logic program has been characterized in the previous sections as
search of a tree of goal statements. The object of the search is a null clause at
the end of a sequence of resolutions. The unifications used on the path from
the starting goal statement at the root of the tree to a null clause define an
n-tuple of values for the n variables of the starting goal statement. If there
is more than one way of solving the original goal, there will be a number of
null clauses at the leaves of the tree, with an n-tuple defined by each path.

The denotation of a procedure is a relation, an unordered set of tuples of
terms. Ideally, a control strategy helps an interpreter construct every tuple
in the relation if necessary. In practice, however, a given control method may
not be able to order the required resolutions so that all tuples are constructed.
In particular, a depth-first interpreter never terminates when there is an
infinite branch in the search tree; this control method will never construct
any tuples defined by finite branches to the right of an infinite branch.

The meaning of a procedure is independent of the control mechanism. The
meaning is a relation, an unordered set of tuples, and a control mechanism
merely defines an order in which those tuples are created. Some alternatives
to the standard depth first search optimize the search by decreasing the size
of the search space. Others generate a larger set of answers by working
around infinite branches or growing branches in parallel. Four techniques
used in sequential systems will be discussed in this section. Although the
mechanisms explained here are defined in terms of a sequential search of a
single goal space, some of the principles illustrated have been used in the
definition of parallel control, surveyed in the next chapter. The first three

Alternate Control Strategies 27

methods select literals other than the leftmost as the literal to expand. The
fourth is intelligent backtracking, a more effective method for backtracking
that prunes portions of the search tree that cannot contain solutions.

2.5.1 Selection by Number of Solutions

In general, a tree search is more efficient when the branching factor in the tree
is smaller. If a search algorithm can expand the nodes that generate fewer de-
scendants, it might save itself needless work by traversing fewer unsuccessful
branches.

Consider a program containing two procedures, p(X) and q(X). In the
following discussion, let np be |D1(p)| the (finite) number of solutions for p,
and nq be defined the same way for q. The npq terms in solutions of both p

and q are the terms constructed in response to the goal

← p(X) ∧ q(X).

Solving either literal by itself will bind X to a term. If the interpreter
selects p(X) from this goal statement, there will be np descendant search
trees, each with a root of the form q(a), where a is one of the solutions for
p. The remaining steps consist of a search through the descendants looking
for one of the npq occurrences of the null clause. On the other hand, if the
interpreter selects q(X) as the literal to resolve from the above goal statement,
there will be nq descendants, with root nodes p(b), where b is constructed
in the solution of q. There are still exactly npq null clauses. Whether the
interpreter must generate all answers (i.e. find all null clauses) or just one
(i.e. find the leftmost null clause), the efficiency of the search is determined
by the proportion of the number of null clauses to the number of branches,
and this proportion is better when fewer branches are generated. Thus when
it is known in advance that nq is less than np, the interpreter should select
q(X) for resolution first, regardless of whether it is the leftmost literal in
the goal statement. The general principle is to select the goal that most
constrains the remainder of the search.

Again, it is important to note that the order of selection of literals affects
the efficiency of the search, and possibly the order in which the answers are
reported, but not the final result. The paths ending with a null clause in
either tree lead to the construction of the same set of values for X.

This general strategy, of selecting literals known beforehand to have the
fewest number of solutions, is used to optimize queries in the CHAT-80 re-
lational database system [93, 96]. In a database, where the arguments of
assertions consist of ground literals, search for a clause with a unifiable head
is augmented by hashing on the functor of the literal and the value of the first
argument term, so decreasing the size of the search space means decreasing
the number of unifications required in the next step.

28 Logic Programming

2.5.2 Selection by Number of Uninstantiated Variables

It may be possible to limit the size of the search space even when the in-
terpreter does not have prior information about the number of solutions for
each literal, by assuming that literals with fewer uninstantiated variables will
generate fewer branches.

Consider a nondeterministic procedure p(X,Y) that has n results when
p is called with two unbound variables for parameters. If one variable is
bound when p is called, there will generally be fewer results returned, since
the solutions are constrained to be the subset of the original n results having
a matching term as the corresponding input argument. If both arguments
are bound when p is called, there are fewer results still – there is just one
response, a yes/no answer. In general, but not always, the branching factor
at a node decreases with the number of variables bound in the literal used
to expand the node. This observation can form the basis of a number of
heuristics for selecting the literal from the current goal statement.

Consider a clause based on the procedures of the program in Figure 2.2:

query(P,I) ← author(P,X) ∧ loc(X,I,D).

Given a depth first interpreter and an initial goal statement

← query(eft,I).

the derived goal statement will be

← author(eft,X) ∧ loc(X,I,D).

There is just one way to solve the first subgoal, and the solution binds X to a
term that leads to only one solution for the second subgoal; the final answer
has X bound to kling, I to uci, and D to 1978.

On the other hand, if the initial goal statement is

← query(P,uci).

the derived goal statement is

← author(P,X) ∧ loc(X,uci,D).

The result of this call is the same as the previous one, with P bound to eft in
the only solution. There are eight ways to solve the first subgoal, since any of
the unit clauses in the procedure for author are unifiable when no arguments
are bound in the call, but only one of those unifications leads to a solution
for the second subgoal. An interpreter using the heuristic of selecting the
goal with the highest percentage of its variables bound would first solve the
rightmost subgoal, loc(X,uci,D) in this derived clause. It would find just
one solution for that goal, leading immediately to a solution for the leftmost

Alternate Control Strategies 29

literal. In other words, the number of misleading branches can be reduced
from seven to zero by selecting a literal with one instantiated variable instead
of zero instantiated variables.

The relationship between search efficiency and the pattern of bindings on
variables was mentioned by Kowalski [54]. The IC-Prolog interpreter allows
users to write a number of versions of the same clause, and then annotate
these clauses so the interpreter selects the most efficient one at runtime,
depending on the pattern of variable instantiation in a goal [18]. A related
strategy will also be used to order literals for parallel solution, described in
Chapter 6.

2.5.3 Intelligent Backtracking

Consider the set of unit clauses

p(a).

p(b).

q(1).

q(2).

r(b,1).

r(b,2).

Given the goal statement

← p(X) ∧ q(Y) ∧ r(X,Y).

a depth first interpreter first solves p(X), binding X to a, then solves q(Y),
binding Y to 1, and then tries to solve r(a,1). When the latter fails, the
interpreter backtracks. The most recent choice point is in the selection of
the clause for solving q(Y); when this is redone, another solution is found,
binding Y to 2, and the next goal is r(a,2), which also fails.

Both of these calls to r fail because the solution of p(X) binds X to a value
that cannot be used to solve r(X,Y). When the interpreter backs up only as
far as q(Y), it cannot fix this erroneous choice, and by re-solving q(Y) and
binding Y to a different value it is wasting time.

An interpreter incorporating intelligent backtracking analyzes the cause
of a failure, and backtracks to the source of values causing the failure [6]. An
interpreter designed and implemented by Pereira and Porto performs this
kind of analysis [73, 74]. In the example given above, it finds that any goal
of the form r(a,X) fails because of the presence of the term a in the first
argument position. Since X was bound to a in the call to p(X), the interpreter
backs up past the call to q(X), all the way to a choice point in the solution
of p(X). When p(X) is solved again, binding X to b this time, the entire goal
list can be solved, without the wasteful attempt to solve r(a,2).

30 Logic Programming

Other cases where intelligent backtracking can be helpful are in goals such
as

← p(A) ∧ q(B) ∧ r(A).

When r(A) fails, q(B) can be skipped on backtracking since it does not
produce any values that can affect the solution of r(A). This is a case where
it is not necessary to analyze the exact cause of the failure; it is only necessary
to notice that a new solution of q(B) cannot help solve r(A), since r(A) and
q(B) have no variables in common [19]. This has been called semi-intelligent
backtracking, since it is not quite as effective as intelligent backtracking. For
example, a semi-intelligent backtrack scheme would not make the correct
backtracking choice for the first example in this section. This limited form
of intelligent backtracking will be seen in the parallel control described in
Chapter 6.

2.5.4 Coroutines

Consider these definitions of the procedures concat and sqrs:

concat([],List,List).

concat([Car|Cdr],L1,[Car|L2]) ← concat(Cdr,L1,L2).

sqrs([],[]).

sqrs([X1|Xn],[Y1|Yn]) ← Y1 is X1*X1 ∧ sqrs(Xn,Yn).

The goal

← concat([1,2],[3,4],L) ∧ sqrs(L,S).

is a request to construct a list L by concatenating lists [1,2] and [3,4],
and a list S such that every element of S is the square of the corresponding
element of L. The only solution in the goal tree with this goal at the root
gives the answers L = [1,2,3,4] and S = [1,4,9,16]. After the first step
in the computation, the derived goal statement is

← concat([2],[3,4],L1) ∧ sqrs([1|L1],S).

The variable L from the original goal has been bound to the term [1|L1],
where L1 is a new variable. Bindings such as these, where a variable is bound
to a complex term containing unbound variables, are partial bindings. The
top level structure of L is known, but values of component substructures have
not been determined yet.

The normal depth first control completely solves the call to concat, bind-
ing L to [1,2,3,4], before the solution of sqrs is started. A coroutine control
interleaves the steps in the solutions, by having concat make a “piece” of the
list L through a partial binding, and then having sqrs use this piece. The

Alternate Control Strategies 31

concat([1,2],[3,4],L) ∧ sqrs(L,S). L = [1|L1]

concat([2],[3,4],L1) ∧ sqrs([1|L1],S). L = [1,2|L2]

concat([],[3,4],L2) ∧ sqrs([1,2|L2],S). L = [1,2,3,4]

sqrs([1,2,3,4],S). S = [X1|S1]

X1 is 1*1 ∧ sqrs([2,3,4],S1). S = [1|S1]

sqrs([2,3,4],S1) S = [1,X2|S2]

X2 is 2*2 ∧ sqrs([3,4],S2). S = [1,4|S2]

sqrs([3,4],S2). S = [1,4,X3|S3]

X3 is 3*3 ∧ sqrs([4],S3). S = [1,4,9|S3]

sqrs([4],S3). S = [1,4,9,X4|S4]

X4 is 4*4 ∧ sqrs([],S4). S = [1,4,9,16|S4]

sqrs([],S4). S = [1,4,9,16]

2

concat([1,2],[3,4],L) ∧ sqrs(L,S). L = [1|L1]

concat([2],[3,4],L1) ∧ sqrs([1|L1],S). S = [X1|S1]

concat([2],[3,4],L1) ∧ X1 is 1*1 ∧ sqrs(L1,S1). S = [1|S1]

concat([2],[3,4],L1) ∧ sqrs(L1,S1). L = [1,2|L2]

concat([],[3,4],L2) ∧ sqrs([2|L2],S2). S = [1,X2|S2]

concat([],[3,4],L2) ∧ X2 is 2*2 ∧ sqrs(L2,S2). S = [1,4|S2]

concat([],[3,4],L2) ∧ sqrs(L2,S2). L = [1,2,3,4]

sqrs([3,4],S2). S = [1,4,X3|S3]

X3 is 3*3 ∧ sqrs([4],S3). S = [1,4,9|S3]

sqrs([4],S3). S = [1,4,9,X4|S4]

X4 is 4*4 ∧ sqrs([],S4). S = [1,4,9,16|S4]

sqrs([],S4). S = [1,4,9,16]

2

The first column shows a goal list, the second the bindings for L or S after a
derivation based on the goal list. L1, L2, etc. are new instances of L created
in recursive calls. The first sequence of derivations is from a depth-first
interpreter, where the derivation is based on the leftmost literal in the goal.
The second sequence of derivations is made by a coroutine interpreter, using
concat as producer and sqrs as consumer. The literal selected for reduction
at each step is underlined.

Figure 2.7: Coroutine vs. Depth-First Control

32 Logic Programming

literal concat([1,2],[3,4],L) is called the producer of L, sqrs(L,S) is a
consumer of L, and the variable L is a communication channel between the
two literals.

The series of derivations made for the above example by a coroutine con-
trol is shown in Figure 2.7. Successive goal statements are derived until a
partial binding is created for L. At that point, the consumer literal is selected,
and derivations continue until a call to the consumer sees an uninstantiated
variable in the argument position for L. Then the producer is selected, an-
other piece of L is created, and the consumer is resumed. To summarize, a
depth first interpreter creates the entire list L, and then calls sqrs to square
every element in L, making S. The coroutine interpreter interleaves the in-
terpretation of the two calls, creating and squaring the first element, then
creating and squaring the second element, until the last element has been
squared. Steps in the solution of the consumer are executed until the input
channel is empty, i.e. the term is an unbound variable. Then steps in the
solution of the producer are executed until a partial binding is made for the
communication channel, and execution switches back to the consumer.

An interesting use of coroutines is in the definition of infinite data struc-
tures. The clause

inf(N,[N|L]) ← M is N + 1 ∧ inf(M,L).

describes an infinite list of integers. In the goal

← inf(1,X) ∧ consume(X,Y).

the call to inf(1,X) unifies X with the infinite list of integers starting with
1, and consume(X,Y) uses the elements of the list to compute Y. The call
to inf results in an infinite loop when an attempt is made to solve it with a
depth first interpreter, since the interpreter tries to create the entire list of
integers starting from 1. A coroutine interpreter would create the sequence
of integers only up to the last integer required by the call to consume.

Coroutines were implemented in IC-Prolog [18], where users annotate
literals in a clause to indicate producer/consumer relationships. Infinite data
structures are used in many elegant programs written in SASL [86] and other
applicative programming languages.

Chapter Summary 33

2.6 Chapter Summary

This chapter presented logic programming as a formal model of computation.
The syntax is a subset of first order predicate calculus. The meaning of
a procedure in the denotational semantics is a relation, a set of tuples of
terms. The operational semantics is defined by resolution, a constructive
proof procedure that creates tuples of the relation in order to provide values
for variables of a goal statement. Control was shown to be important for
efficiency: it may have an effect on the order in which answers are found, or
the number of steps executed in deriving an answer, but any results generated
are tuples of the relation. Some control strategies may not be complete,
since some computable results are not generated. A number of interesting
alternatives to the simplest and most common control method were discussed.
These alternatives, all defined for sequential systems, illustrate some of the
techniques used in parallel systems.

Resolution and unification were first defined by Robinson for use in au-
tomatic theorem proving [76]. An overview of first order predicate calculus,
an algorithm for transforming well formed formulae into sets of clauses, and
a discussion of resolution can be found in Nilsson’s book [68]. Martelli and
Montanari presented three efficient unification algorithms, and discussed the
occur check, a component of unification which is essential for logical cor-
rectness but usually omitted from logic programming systems for reasons of
efficiency [63].

DEC-10 Prolog and its successors are the most widely used implementa-
tions of Prolog [72]. It was the first to use a compiler to generate machine
code. Compiled DEC-10 Prolog programs are comparable in speed to com-
piled Lisp programs [91, 97]. Building on this work, Warren described an
abstract machine for the target code of a compiler; the abstract machine can
be the basis for a byte-code interpreter or implemented in microprogram [95].

Luis Pereira and his colleagues have written a number of papers on the
subject of control in logic programs. In addition to the work on intelligent
backtracking, there is Epilog, a language that allows programmers to define
special-purpose control constructs for different situations [71].

Two logic programming languages not based on the resolution rule are
LPL, described in Haridi’s thesis [40], and Relational Programming (MacLen-
nan [61]). Haridi’s system is based on a natural deduction proof procedure,
and supports the negation and if-and-only-if constructions that are difficult to
express with Horn clauses and depth-first search. In the relational program-
ming system, entire relations are computed at the same time, and operations
are performed on relations as a whole, instead of on individual tuples within
the relation.

A number of large and useful applications have been written in Prolog.
Among these applications are the natural language query processor of the

34 Logic Programming

CHAT relational database system [24, 93, 96], Warren’s problem solving pro-
gram [89], and Kibler and Porter’s episodic learning program [53]. Expert
systems written in Prolog are described by Subrahmanyam [80]. The use of
Prolog as a metacompiler was described by Warren [92], and a comparison of
definite clause grammars and augmented transition networks for processing
natural language was given in the paper by Pereira and Warren [70].

Chapter 3

Parallelism in
Logic Programs

Execution of a logic program begins when the user provides an initial goal
statement. The interpreter computes values for variables of the goal through
a series of resolutions. If the null clause can be derived, the substitutions
used in the derivation provide values for the variables of the initial goal. The
execution can be represented as a goal tree, where multiple descendants of a
node indicate a choice of clauses for resolving the goal at that node.

The two major forms of parallelism in logic programs can be explained in
terms of speeding up the search of the goal tree (Figure 3.1). OR parallelism
refers to a parallel search strategy – when a search process reaches a branch
in the tree, it can start parallel processes to search each descendant branch.
AND parallelism corresponds to parallel construction of a branch – when the
interpreter knows a number of steps must be done to complete a branch,
it can start parallel processes to perform those steps. The name for OR
parallelism comes from the fact that in a nondeterministic program, we are
often satisfied with any answer. When any of the processes started at a
choice point finds a result, the original goal is solved. The name for AND
parallelism is based on the fact that all steps must succeed in order for a
result to be produced.

Another way to explain the distinction is in terms of the denotation of
a goal statement. An interpreter is expected to produce a set of tuples of
terms, where each tuple has a value for each variable of the initial goal. OR
parallelism is a technique for parallel construction of the different tuples in the
denotation of a nondeterministic goal, while AND parallelism is parallelism
in deriving any one tuple. In an OR-parallel interpreter, each element is
constructed sequentially, using the same sequence of operations performed

35

36 Parallelism in Logic Programs

← p ∧ q.

← a ∧ b ∧ q. ← c ∧ q. ← d ∧ e ∧ q.

*

*

Goal: ← p ∧ q.
p ← a ∧ b.
p ← c.

p ← d ∧ e.
...

AND Parallelism:

parallel execution of
steps within a path

︸ ︷︷ ︸

OR Parallelism:

parallel search of
different paths

������

A
A
A

PPPPPPPPP

�
�

�
�

A
A

A computation step in a logic program is the derivation of a new goal from
an existing goal and a program clause. A solution corresponds to the steps
from the initial goal to a null clause at a leaf node, shown here as a node
marked with an asterisk.

Figure 3.1: AND Parallelism vs. OR Parallelism

Models for OR Parallelism 37

by a sequential interpreter. A deterministic goal statement has exactly one
solution; for deterministic goals an OR-parallel interpreter finds an answer
no faster than a sequential interpreter which makes perfect decisions at each
choice point. An AND-parallel interpreter has the potential to speed up
deterministic computations, since it executes in parallel the steps needed to
construct the result.

Explained in terms of the structure of a program, OR parallelism is the
parallelism obtained from parallel execution of the different clauses of a pro-
cedure. AND parallelism is the parallelism obtained from parallel execution
of the goals in the body of a clause. AND and OR parallelism were originally
defined this way by Conery and Kibler [21].

A third source of parallelism described in this survey is parallelism in low
level operations, such as unification. Systems exploiting parallelism at this
level are typically sequential interpreters with respect to the global view of
the computation, often executing exactly the same sequence of derivations
as a Prolog interpreter.

3.1 Models for OR Parallelism

Abstract models for OR parallelism fall into three broad categories. The first,
called “pure” OR parallelism, consists of a parallel search of the goal tree.
The earliest system of this type was designed by Haridi and Ciepielewski [11].
When a searching process comes to a choice point, it can fork new processes
for each alternative. Processes proceed from that point with very little in-
teraction. If a process cannot unify its first literal with any program clause,
it simply terminates; if it derives the null clause, it announces the result and
then terminates. There is no need to send any information to another active
search process.

The second form of OR parallelism is based on objects called OR pro-
cesses. In this model, a process corresponds to an object of Actors or
Smalltalk [36, 41]. Each process is responsible for executing a small piece
of the program. It maintains local state information, and communicates
with other objects via messages.

The third form, called search parallelism by Conery and Kibler [21], is
based on a physical partitioning of the program. Clauses are stored in dif-
ferent nodes of a machine such as a multiprocessor database machine. The
common aspect of the models in this category is that unification is done at
the nodes where the clauses are stored, while the derivation of resolvents and
overall control decisions are carried out by a different process.

Two major issues in the exploitation of OR parallelism are the combi-
natorial explosion in the number of processes and representation of variable
binding environments. Nondeterministic logic programs may have too much

38 Parallelism in Logic Programs

D

B

A

X

C

X

E

C

X

t1 : t2 : t3 :

X

X

5

X

X

X

6

Goal: ← p(X).

p(A) ← q(A) ∧ u(B).

p(C) ← r(C).

q(D) ← s(D).

r(E) ← t(E).

s(5).

t(6).

When a clause is called, an environment is pushed on the stack (which grows
down the page). Environments are not popped until the clause fails. The
first snapshot, on the left, shows the stack just after the call to s(D) and
before u(B) is attempted. Since D was unified with X, X was bound to 5 by
the call to s(D). At t2 u(B) has failed and q(A) failed on retry, and r(C) is
about to be called; note X is an unbound variable again. The right stack is
the final stack, after the goal succeeds.

Figure 3.2: Environment Stack for Sequential Prolog

parallelism. The state space for game trees and other search-oriented AI
problems can easily grow so large that systems will create too many parallel
processes. When physical processors work on more than one logical pro-
cess at a time, some amount of task switching is to be expected, but when
the number of tasks is very much larger than the number of processors, the
overhead of task management will have an adverse effect on the system.

The problem in managing binding environments is illustrated in Fig-
ures 3.2 and 3.3. Figure 3.2 is a greatly simplified representation of how
variables are stored in a Prolog program. Each time a clause is used, an en-
vironment containing slots for each variable of the clause is pushed on a stack,
in much the same way stack frames are created for Pascal procedures. Un-
like Pascal, however, the frames are not popped when the Prolog procedure
exits. The frames represent substitutions, and the system needs the values
assigned in substitutions when solving the remaining goals in the statement
from which the clause was called. Environments are popped from the stack
when the clause fails.

It would be tempting to implement binding environments for parallel
processes by allowing new processes at a choice point to share all the previous

Models for OR Parallelism 39

D

B

A

E

C

X

X/5

X/6
X

X

X

X

����
HHHH

Goal: ← p(X).

p(A) ← q(A) ∧ u(B).

p(C) ← r(C).

q(D) ← s(D).

r(E) ← t(E).

s(5).

t(6).

In an OR-parallel system, a new process is started at a choice point in the
program, such as the call to p(X) here. If new processes share the existing
stack, each needs its own copy of variables which are unbound at the time of
the fork. In this example, the processes generate conflicting bindings for X.

Figure 3.3: Environment Stack in OR-Parallel System

values in the stack. However, as Figure 3.3 shows, unbound variables in the
older stack frames pose a problem, since each new process has to be able to
bind these variables in unifications in its own branch of the tree.

3.1.1 Pure OR Parallelism

The problem of efficient memory representation for OR-parallel systems has
been attacked by a number of researchers. The first to address the problem
were Ciepielewski and Haridi, for the OR-Parallel Token Machine. In their
technique, a directory is associated with each process, containing pointers to
stack frames for the process [12]. Frames containing no unbound variables
may be shared among many processes, while others are copied for each new
process.

A technique developed by Borgwardt for an AND-parallel system has
also been used in pure OR-parallel systems. In this representation, a “hash
window” is used to find values of variables in older frames [3]. If a reference
is made to a variable in an older frame, and the variable is bound, its value
can be used, since the binding was made before the processes were split. If
the variable is unbound, the system checks the hash window of the current
frame (and possibly other frames on the path back to the older frame) to see
if it was bound since the time of the fork.

In Lindstrom’s method, variables that are unbound in the frame of the

40 Parallelism in Logic Programs

calling process are imported into the frame of each called clause [58]. The
environments of the called clauses are extended to contain slots for each
unbound variable in the parent process. A similar technique devised by D.
S. Warren extends the local environment at the time an older variable would
have been bound. Warren also describes an optimization for this technique to
give each process fast access to its copy of old variables [98]. Directory trees,
hash windows, and Lindstrom’s variable importation scheme were compared
in a study by Crammond [22]. Crammond designed a simple virtual machine
for OR-parallel execution and used it to measure the relative amount of
memory and processor resources used for the three methods.

What the above techniques all have in common is a mechanism for pre-
venting the binding of shared variables, through the use of auxiliary struc-
tures to identify shared variables and indicate where local copies are kept.
A technique called kabu-wake1 allows older variables to be bound; if, later,
one of these variables needs to be shared by parallel processes, each process
will get its own copy. In this method, when a choice point is reached, alter-
natives are stored in a list of potential processes, but the new processes are
not started right away. The main process continues, binding older variables
and keeping trail information, as in a Prolog interpreter, without regard to
the fact that blocked processes will later need to see these as unbound vari-
ables. When a blocked task is finally started, it copies as much of the current
stack as it needs, and then, using trail information, simulates backtracking
to unbind the variables bound by the other process since the choice point.
The net result is the same, since the new process has its own copy of shared
variables, but the copy is made later, in a lazy fashion. This technique was
used in two different systems, ORBIT (Yasuhara and Nitadori [102]) and the
system of Kumon et al[55].

One of the ways to control the explosive growth in the number of parallel
processes in OR parallelism is via the syntax of the program. In Parlog,
clauses in a procedure can be terminated by semicolons or periods [17]. If a
period separates the clauses, they are executed in parallel when called from
an OR-parallel goal. A semicolon separating two clauses means all solutions
from the clauses before the semicolon are found before starting processes to
find solutions to clauses after the semicolon. For example, in the procedure

p ← q.

p ← r;

p ← s.

all solutions for p based on parallel calls to q and r are found first. After
processes for those clauses terminate, a process will be started for s.

1A Japanese term for a technique of splitting a tree at the root for transplanting.

Models for OR Parallelism 41

Ciepielewski and Haridi examined a method for pruning unnecessary
branches in the search tree when the user expects just one result [13]. This
technique can be viewed as a parallel analogue of cut, where all other candi-
date solutions for a goal are discarded as soon as one result is found.

Other approaches to growth control in pure OR-parallel systems are based
on directing the search from a global perspective. For the B-Log system,
Lipovski and Hermenegildo investigated alternative search strategies [60].
They give a graph-oriented representation for goals, and rules for selecting a
literal from a goal statement in order to expand the next level of the search
tree. Instead of selecting the leftmost literal, B-Log selects the “best” literal,
using heuristic information about the probability of a success at the end of a
branch created with the literal. The heuristic information is global, allowing
the search to vary from depth-first to breadth-first as the situation demands.

Another model based on varying the search strategy in order to control
the number of processes was proposed by Li and Wah [56]. Li and Wah
use heuristics to balance the cost of expanding a node with the probability
of success through descendants of the node. The probabilities are obtained
from prior executions of the program.

A general framework for parallel search of an abstract tree was presented
by Bowen [5]. The search process uses an operator named sons to generate
descendants of a given node in the tree, and compsof to break a node into
component parts. If the nodes of the tree are defined to be goal lists, compsof
defined to return the first literal in the node, and sons to create the resolvent
based on the first literal, Bowen’s interpreter would perform the normal OR-
parallel goal search. AND parallelism could be introduced by having compsof
split a node into larger pieces, and a less eager search could be implemented
by various strategies in sons.

Clauses are compiled into dataflow graphs called assertion graphs in a
model defined by Bic [2]. A “graph fitting” process is used to evaluate
queries. Graph templates carried on tokens are matched against portions
of the assertion graph; if the template matches a value at a node, it is passed
on to the next node, otherwise it is absorbed. Multiple results are obtained
by duplicating a token at a choice point in the assertion graph.

Both major issues of OR parallelism – storage management and process
control – are addressed in the “goal rewriting” model of the PIE system of
Goto, Tanaka, and Moto-Oka [38]. Intermediate goal statements in this pure
OR-parallel model are continually rewritten in reduced form in order to keep
them as small and independent as possible. Control of activity is achieved
through a relation defined on active goals in a global pool.

42 Parallelism in Logic Programs

p q r

�
�

�

@
@

@

aaaaaaaa

�
�

�

@
@

@

��	 ���

��	 ��� @@R @@I

OR Process
for p

⇒

⇐
goal
statement
with call to p

⇐

processes to
solve bodies
of clauses for
p

An OR Process is an independent interpreter created to solve one literal. All
solutions to the literal are sent in messages back to the parent process.

Figure 3.4: OR Processes

3.1.2 OR Processes

OR processes can be thought of as independent interpreters created to solve
a goal statement consisting of exactly one literal.

OR processes work in a dynamic environment of other processes, usually
called AND processes. The collection of processes and their communication
channels form an AND/OR tree, where processes at one level use processes
at a lower level to help solve a goal and then communicate results to their
parent processes (Figure 3.4). The first interpreter based on OR processes,
a precursor of the AND/OR Process Model, was described by Conery and
Kibler [21]. The OR processes of this model, and the style of OR parallelism
that results, will be described in detail in Chapter 5.

The contrast between OR processes and processes in a pure OR-parallel
search of a goal tree is best seen in the communication requirements placed on
each. The processes in the search are, conceptually, totally independent, since
they do not have to communicate with one another in the basic operation
of the model. When a goal is not unifiable with the head of any clause, the
process simply terminates, and when it successfully derives a null clause, it
notifies the user and terminates. An OR process, on the other hand, must

Models for OR Parallelism 43

pass results back to its parent process and communicate with descendant
processes to coordinate their role in the solution of the goal literal.

Although this communication adds overhead to the system, it also pro-
vides an opportunity for controlling the level of parallelism. OR processes
can generate a continuum of activity, from purely sequential to the same
maximum amount exploited by parallel search. The amount of OR paral-
lelism exploited by the system is a function of the control structure within
the OR process, the control structure in the parent process, and the protocol
used when sending results from the OR process to its parent. The differ-
ence between controlling parallelism through the communication protocol,
as opposed to the way it is done in the pure OR-parallel models, is that in
the latter a large amount of global information is required. The decision to
expand a node is based on what is happening arbitrarily far away in the goal
tree. In the OR process models, growth control is a local decision, based
on local factors such as the status of the communication channel between a
parent and child process. The global perspective might provide the optimal
search, as in the best-first search in B-Log, but it does so at the cost of global
information flow.

An interpreter by Furukawa, Nitta, and Matsumoto [34] is at the sequen-
tial end of the continuum, generating a minimal amount of OR parallelism.
Their form of parallelism has also been called backup OR parallelism The
idea is that while a controlling process is using one result from an OR pro-
cess, the OR process can proceed, working on a backup answer. If the backup
answer is ready before the parent process needs it, the OR process blocks.
Thus the OR process is just trying to stay one step ahead of its parent, cre-
ating a situation where the parent never has to wait for an answer (after the
first one) while at the same time consuming as little processing resources as
possible. The overall effect is a sequential, depth first interpretation where
backtracking is faster due to the presence of precomputed backup results.

A system of OR processes designed to extract the maximum amount of
OR parallelism is the interpreter of Lindstrom and Panangaden [59].2 In
this model, packets of information containing variable bindings are routed
between OR processes and their parents and descendants. Parent AND pro-
cesses are designed to accept results from the OR processes as quickly as they
can be generated, so AND processes may be performing operations based on
many different results simultaneously. Lindstrom and Panangaden call this
effect “induced AND parallelism.” There is no actual AND parallelism in
this system, according to our definition, since the sequence of derivations for
any one result is not shortened. This can be seen by tracing the operations

2In naming the nodes of their process tree, Lindstrom and Panangaden follow the
convention of Nilsson [68] in labeling nodes of an AND/OR tree according to the node’s
relationship with its siblings, not its children. The objects called OR processes in this
book are called AND processes by Lindstrom and Panangaden.

44 Parallelism in Logic Programs

in the tree of processes required to produce any single answer. A packet
reaching the root of the process tree is the result of a sequence of unifications
equivalent to those performed in one of the paths from the root of the goal
tree to a success leaf.

Two other systems defined in terms of routing streams of binding envi-
ronments between nodes representing literals are the systems of Umeyama
and Tamura [88] and Halim and Watson [39]. In the system of Umeyama
and Tamura, there are no objects explicitly called OR processes – the actions
carried out by OR processes in the Lindstrom and Panangaden system are
built into the parent process – but the style and amount of parallelism are
very similar.

The OR parallelism in the AND/OR Process Model is near the middle
of the scale. OR processes try to create as many results as possible, but the
results are passed back to the parent one at a time, as the parent demands
them. In the system of Tamura and Kaneda [82], OR processes send re-
sults immediately instead of waiting for the parent process to request them.
Buffering of results is handled at the system level, so that results are stored
in a message queue if the parent is not ready to accept them. Varying the size
of the queue is a means of controlling the amount of parallelism. If the queue
size is one, the parallelism would be very similar to backup OR parallelism;
longer queues would allow more parallel activity.

Another metric for comparing goal tree search with an OR process model
is the size of the problem solved by each type of process, and the amount
of space required to represent the state of the process, including variable
bindings. Processes in pure OR-parallel models are analogous to Prolog
interpreters in the amount and type of state information kept. At any point
in time, they keep a list of goals remaining to be solved, and variable bindings
are represented in a stack of environments. This results in a large structure in
a single memory address space, where the value of a variable can be located
anywhere in the structure.

OR processes follow the principles of modularity and scalability men-
tioned in Chapter 1. By using a set of small, independent interpreters, state
information can be localized. Binding environments for the AND/OR Process
Model, described in Chapter 7, are transportable from one memory system
to another and require a minimum of references from one environment to
another.

Other systems use the OR process style of OR parallelism in conjunction
with some form of AND parallelism. Discussion of these is postponed until
the section on AND-parallel models.

Models for OR Parallelism 45

← p(X) ∧ q(X).

��
��

��
��

��
��

��
��

p(X) ↓

X/a ↑

X/c ↑

X/b ↑

p(a)

p(c)

q(d)

p(b)

r(a)

q(a)

r(c)

r(b)

q(b)

q(c)

⇐

⇐

⇐

Problem
Solver

Unification
Pro-
cesses

Clause
Database

The problem solver broadcasts a literal, requesting bindings for variables in
the literal. Each node performs unifications of the broadcast literal with the

heads of clauses stored in the node, and for each successful unification
returns a message containing the bindings.

Figure 3.5: Search Parallelism

3.1.3 Distributed Search

Once an interpreter selects a literal from a goal statement, it must find every
clause with a head that unifies with the selected literal. If the logic program
is very large, this operation can be enhanced by distributing the clauses in
the database and performing a parallel search of the database before each
inference step. The other OR-parallel models are either defined at a level of
abstraction above the level where processor topology is important, or require
a central database of clauses accessible by all processors, or assume identical
copies of the program are stored with each processor. The systems described
in this section are designed for applications where large programs must be
split into smaller sections and stored in the local memories of the nodes of
the multiprocessor (Figure 3.5).

The first system to use this form of parallelism was PRISM [31, 50]. The
underlying architecture is ZMOB, a ring of 256 microprocessors connected
by a specially designed bus. The nodes in the ring are partitioned into a
central problem solver, or PS, an extensional database, where unit clauses
are stored, and an intensional database, where non-unit clauses are stored.
In each execution step, the PS selects a literal from a goal statement and

46 Parallelism in Logic Programs

broadcasts it to every database node. Each node performs a unification
of the literal and the heads of the clauses stored there; when a unification
succeeds, the resulting bindings are sent back to the PS. The PS applies a set
of bindings and moves on to the next literal in the goal, repeating the process.
In its simplest form, the PS is a single processor, and the overall execution is
a depth-first search. If the PS consists of several nodes, it is possible to have
each working on several branches of the proof tree, corresponding to a pure
OR-parallel execution.

Taylor, Lowry, Maguire, and Stolfo [83] described a system for a multi-
processor database machine, taking advantage of special purpose hardware to
perform low level relational operations. The abstract architecture consists of
a control processor (CP) and several small grain processing elements (PEs).
PEs in this system store only the heads of clauses. If a clause is a non-unit
clause, the PE stores a tag associating the body with the head, but the body
itself is stored in the CP. The difference between this system and PRISM
is that all goals in the current goal statement are broadcast simultaneously,
instead of sequentially from left to right. Unifications are performed by the
PEs, and results returned to the CP. The CP then executes a join opera-
tion, discarding inconsistent bindings. If an element of a tuple is based on a
non-unit clause, the body of the clause is solved in the same manner. A form
of AND parallelism is exploited here, since the CP simultaneously requests
solutions to all literals in the body of a goal. This technique will work for
database queries, but not for goal statements containing evaluable predicates
or other goals that succeed only when variables in certain arguments are
bound.

The system of Warren, Ahamad, Debray, and Kalé [98] is designed to work
in an environment of loosely coupled processors connected by a broadcast
network. In their system, one node is designated as the master for each
top level goal. The master selects a literal from the goal, and broadcasts a
request for solutions for the literal. If another node has a clause with a head
that unifies with a broadcast literal, it applies the bindings required by the
unification and becomes the master of the goal statement created from the
body of the clause. Thus the role of PS is distributed, since any node can
be the master of a goal statement and is in charge of requesting solutions to
the literals in the body of the statement. Since a master processes literals
left to right, sequentially, and many masters can be active at any one time,
the system is also doing a parallel search of a tree of derived goals.

Another system based on distributing program clauses to different nodes
and having the processors perform unifications in parallel is described by
Nakagawa [65]. In this system, all clauses of one procedure are stored in the
same node. When a call is made to a procedure for p(X), a token carrying
bindings from the environment of the call is sent to the node where the
procedure is stored. The corresponding processor does the unifications of

Models for OR Parallelism 47

the input literal with the heads of the clauses of p serially. For each one
that succeeds, it sends an updated token to the processor which will solve
the call following p in the original clause. As is the case with the induced
AND parallelism in the Lindstrom and Panangaden model, what appears to
be AND parallelism is really OR parallelism. A large amount of concurrent
activity is generated in the solution of one clause body, but it is based on the
processing of multiple results for the clause, not parallelism in deriving one
result. Any given result is produced sequentially, with the token that carries
the result being passed serially between the nodes where the literals of the
query are stored.

3.1.4 Summary

The three styles of OR parallelism appeal to different application areas. At
the abstract interpreter level, pure OR parallelism has the least communi-
cation overhead, and there is a minimum of coordination required for the
parallel processes. Implementation techniques developed so far are parallel
versions of the three-stack model commonly used for Prolog, and are based on
the assumption that all memory is, if not physically directly shared by each
processor, at least part of a single address space. Unless these techniques are
adapted for non-shared memory, parallel goal search will not execute well
on massively parallel machines due to the cost of accessing information in
non-local memory. Also, the fact that processes proceed as quickly as pos-
sible without any interaction may also pose a problem for large programs
on small machines. In a situation of unrestrained growth in the number of
processes, each processor will have to execute a large number of processes,
and the overhead of switching between processes could be severe. Heuristics
or other information may guide the search and control the growth, but this
requires global communication among the processes.

Models based on OR processes are, at the abstract level, more modular.
This modularity allows for a direct mapping to a partitioned representation
for environments. The communication overhead of passing results back to
parent processes may make these systems slower on small problems. However,
the fact that processes must communicate with each other might be turned to
advantage if protocols can be adapted for use in controlling the exponential
growth of the number of processes in larger programs.

OR process models and the parallel search model make no provisions for
distribution of clauses. There is an implicit assumption that when a process
needs to unify a goal with heads of candidate clauses, it has access to all
candidates in the system. This means either distributing all clauses to all
processors in the system, or providing for non-local access. The strength
of the distributed search models is in the partitioning of the program. The
parallelism lies in having all nodes looking for candidates for unification with

48 Parallelism in Logic Programs

a broadcast goal, and in doing the unifications in parallel at the nodes. For
databases of even a moderate size, partitioning will be essential, since each
tuple in an explicit relation is represented by a unit clause in the logic pro-
gram.

The drawback to search parallelism is the communication involved during
unification. When the control processor broadcasts a request for unification
for a literal, it must also broadcast current bindings for the variables in the
literal. If variables can be bound to large structures, this may be quite
costly. However, in database applications it is common to restrict values of
variables to atomic terms, simplifying both the unification algorithm and the
representation of bindings. This fact, plus the ability to distribute large pro-
grams over many nodes, make this form of parallelism attractive to database
applications.

3.2 Models for AND Parallelism

AND parallelism is the parallel solution of more than one goal in a given goal
statement. The central problem in implementing this form of parallelism
is management of variables occurring in more than one literal of the goal
statement. In a goal statement such as

← p(X) ∧ q(X).

the variable X occurs in both goals. To solve the goal statement we need to
find a value for X that satisfies both p and q. Most abstract models for AND
parallelism handle this problem the same way: they allow only one of the
goals to bind the shared variable, and postpone solution of the others until
the variable has been bound. The models differ in scheduling of goals, the
rules for binding shared variables, and whether the goals that bind variables
can be nondeterministic.

3.2.1 Stream Parallel Models

The coroutine control strategy described in Section 2.5.4 has been devel-
oped into AND-parallel control in a number of systems. In the behavioral
interpretation of a clause,

p ← q ∧ r.

means “process p can be replaced by the system of processes q and r” [15, 77].
In this interpretation, literals in a goal statement are processes, and variables
occurring in more than one literal are communication channels between the
literals (Figure 3.6). This form of AND parallelism was labeled stream par-
allelism by Conery and Kibler [21]. Early work on the semantics of a logic

Models for AND Parallelism 49

��
��
p(X) ��

��
q(X)

��
��
a(Y)

�
�

�
�b(Y,X)

�
�

�
�c(X,Z) ��

��
q(Z)

��
��
a(X)

�
�

�
�e(X,W,Z)

�
�

�
�c(Z,Z2) ��

��
q(Z2)

��
��
d(W)

-

- - -

- - -

����*

X

Y X Z

X Z Z2

W

⇓ ⇓

⇓ ⇓ ⇓

← p(X) ∧ q(X).

p(X) ← a(Y) ∧ b(Y,X).

q(X) ← c(X,Z) ∧ q(Z).

b(X,X).

c(X,Y) ← d(W) ∧ e(X,W,Y).

The behavioral reading of a clause p ← q ∧ r is “process p can be replaced
by processes q and r.” A variable shared by two literals is a communica-
tion channel between the corresponding processes. The double arrow in this
diagram indicates process replacement, a single arrow is a communication
channel. The three rows of the figure show the system at three different
times. Note that if two processes communicate directly, there will be a direct
path between two of their descendants.

Figure 3.6: A Goal Statement as a Network of Processes

50 Parallelism in Logic Programs

program as a network of parallel processes is described in papers by van Em-
den and de Lucena Filho [33] and Hogger [43].

In Parlog [17], the successor of IC-Prolog, producers and consumers op-
erate in parallel instead of in the interleaved sequential manner of IC-Prolog.
Clause bodies in Parlog have two components. The guard is a list of literals
at the front of the body, separated from the remainder of the body by a
colon. The following portion of the sieve of Eratosthenes is taken from Clark
and Gregory:3

filter(filter-num,[num|list],[num|f-list]) <-

~divides(filter-num,num) :

filter(filter-num,list,f-list).

filter(filter-num,[num|list],f-list) <-

divides(filter-num,num) :

filter(filter-num,list,f-list).

The colon is a commit operator. Denotationally it is the same as conjunction,
so the clause is solved only if all literals in the guard and body are solved.
The guards are used to determine the clause that will be used to solve a
call to the procedure. When a procedure is called, parallel processes are
set up to evaluate the guards of all clauses in the procedure. If all guards
fail, the call fails. Otherwise, when one succeeds, the system terminates the
others and commits to the body of the clause with the successful guard. In
the example, when a goal statement contains a call to filter, processes
are started to evaluate the two guards. The tilde is a negation operator,
implementing negation as failure. As soon as one of the guards is solved, the
system terminates the other guard process, and uses the corresponding body
to finish the call.

In general, the guards are not mutually exclusive, as they are in the
above example. The policy of committing to the body of the clause with
the first guard that evaluates to true, and discarding all other choices, is
known as committed choice nondeterminism [28, 42]. It has also been called
“don’t care” nondeterminism, as opposed to the “don’t know” nondetermin-
ism of Prolog and the OR-parallel models. Parlog also allows “don’t know”
nondeterminism, via an evaluable predicate named set, which evaluates its
argument in an OR-parallel fashion.

Crammond and Miller [23] have designed a virtual machine model for
Parlog. What they refer to as AND processes and OR processes are control
abstractions for managing parallel operations in a global environment. In
keeping with the Parlog model, when a guard terminates successfully, the
global environment structure is updated. Nodes representing other guards
are pruned, and the successful guard is merged with its grandparent conjunct.

3In Parlog, variable names start with lower case letters.

Models for AND Parallelism 51

Concurrent Prolog, developed by Shapiro [78], is another system based
on parallel execution of coroutines using guards and committed choice non-
determinism. Coordination of goals with variables in common is done with
read-only variables identified by a question mark. In the goal statement

← p(X?) ∧ q(X).

the occurrence of X in the first goal is marked as read-only. If solution of a
goal would bind a read-only variable, the goal is postponed until some other
goal binds the variable. In this example, execution of p and q proceeds in
parallel. If a step in the solution of p would unify X with a non-variable term
t1, execution is suspended until a step in the solution of q binds X to a term
t2. The execution of p then resumes in the unification of t1 and t2.

One can use co-routine control structures to implement objects [77]. The
clauses of a procedure each implement one method (a behavior defined for
a specific type of message), messages to the object are represented by an
input list, and the internal state of an object is represented by parameters in
recursive calls. For example, the following procedure implements a string:

string([append(S)|Msgs],Si) :-

concat(S,Si,So), string(Msgs?,So?).

string([substringp(S,Ans)|Msgs],Si) :-

substringp(S,Si,Ans), string(Msgs?,Si).

The first parameter is used for a stream of messages sent to the object, and
the second represents the object’s internal state, in this case a list holding
the characters of the string. An instance of a string is created by calling
string with two parameters, the stream used to carry input messages and
the initial state of the string:

. . . string(M1?,"abc") . . .

Another process sends string a message by creating a partial binding for
M1. If M1 is bound to [append("d")|M], the first clause is selected (a null
guard is always true, and the other choices are discarded), concat creates
a new internal state for the string, and the recursive call has the effect of
replacing the original string by a new string with the updated internal state.
The read-only variables on the message streams in the calls to string prevent
the object from instantiating this parameter; messages must come from other
processes.

What makes Concurrent Prolog and Parlog different from other object ori-
ented programming languages is the use of logic variables to implement two-
way communication [16, 78]. If an unbound variable is sent as a parameter in
the message, the object can return information to the sender by binding the
variable. For example, if the message for the string is substringp("bc",X)

52 Parallelism in Logic Programs

the call to substringp in the body of the clause can bind X to yes or no

depending on whether "bc" is a substring of the current string.
The language GHC (for Guarded Horn C lauses) is another language ex-

ploiting parallelism and committed choice nondeterminism (Ueda [87]). In-
stead of using modes or read-only variables, GHC synchronizes calls via rules
for executing guards. For example, guards may not bind variables of the
head of the clause, so if a guard ever reaches a state where it would bind a
head variable, it blocks until the variable is bound by some other process.

The Distributed Logic language of Monteiro is based on an extension of
Horn clause resolution [64]. Monteiro defines the notion of a distributed
clause and a resolution-based inference step for goals statements and dis-
tributed clauses. A distributed clause has the form

p1, p2, . . . pn <- q1, q2, . . . qn.

with n literals on the left and right sides. This is equivalent to the n Horn
clauses

p1 <- q1.
...

pn <- qn.

In an execution step based on a distributed clause, a set of literals is chosen
from the current goal statement. Each literal of the set must unify with a
literal in the head of the distributed clause. Goal statements and the bodies
of clauses can be annotated to specify the order of reduction. The utility of
the distributed clause syntax is that it allows variables to be shared among
the clauses for purposes of synchronization and communication.

3.2.2 AND Processes

AND processes, like OR processes, are independent interpreters solving small
portions of a program (Figure 3.7).

In the AND/OR Process Model, an AND process solves the body of a
clause by creating an OR process to solve each literal. AND parallelism
in this model is a matter of having more than one OR process active at
a time. When literals share a variable, only one, called the generator for
the variable, is allowed to bind it. One difference between the AND/OR
Process Model and the stream parallel models such as Parlog is that all steps
in the solution of a generator are completed before any of the consumers
start. This means there is no overlapping of execution when the shared
variable is bound to a large structure in a series of partial bindings. In the
stream models, parallel processes are started simultaneously for each literal
in the body of a clause, with consumers blocking until the shared variable

Models for AND Parallelism 53

← p ∧ q ∧ r.

�
�

�

aaaaaaaa

�
�

�

@
@

@

��	 ���

��	 ��� ?6@@R @@I

⇐
OR pro-
cess for head
of clause

⇐

Processes to
solve literals
in goal state-
ment

An AND Process coordinates the solution of a clause body. It creates an OR
process to solve each individual literal (see Figure 3.4).

Figure 3.7: AND Processes

is bound to a nonvariable terms. In most AND process models, the literals
are ordered prior to execution, and processes are started by the parent only
when generators have completed execution.

Another difference is in the number of results: the stream models gen-
erate just one solution per procedure call, due to the nature of committed
choice nondeterminism, but AND processes can generate a sequence of re-
sults, through an operation analogous to backtracking. The difference be-
tween passing a number of values through a communication channel in the
stream models and passing a number of values through multiple solutions in
the AND process models lies in the semantics of the clause. Consider the
clause

p(X,Y,Z) ← q(X,Y) ∧ r(Y,Z).

For the coroutine models, assume Y is a communication channel. Semanti-
cally, the meaning of the generator literal, D(q), contains one tuple; the value
of Y is a single complex term created through a series of partial bindings. In
the AND process models, Y will be bound to as many different terms as it
takes to find solutions for r(Y,Z). D(q) will have one tuple for each of these
values, rather than one tuple with a complex term containing each of the
values as subterms.

The two forms of AND parallelism were combined in an extension to
the AND/OR Process Model by Borgwardt [3]. The memory representation

54 Parallelism in Logic Programs

and control mechanism of this system allow overlapping production and con-
sumption of a structure, as in the stream models. If the consumer fails when
processing part of the structure, the producer must start over on a new term,
which may or may not have acceptable elements from the first structure. In
other words, the producer starts work on a new stream, rather than replac-
ing previous elements of the current stream. Referring to the example clause,
D(q) would have more than one tuple, where the value of Y in each tuple is a
complex term created as a stream. Another system combining the two forms
of AND parallelism is PM, by Singh and Genesereth [79].

Allowing literals to provide multiple results complicates the AND-parallel
control. Consider the following clause:

p(X,Y) ← q(X) ∧ r(Y).

Given a call p(A,B) where A and B are both unbound, if there are nq results
for q(X) and nr results for r(Y), there will be nq × nr solutions of the
goal. Prolog creates this cartesian product of results through backtracking;
each time q(X) succeeds, the solution of r(Y) starts all over again. In an
AND-parallel system, where p and q are being solved simultaneously, another
mechanism must be used to create the cross product of results.

The technique used in the AND/OR Process Model is a form of intel-
ligent backtracking adapted for parallel control. An assumption made by
the original implementation cause it to miss some valid combinations of tu-
ples [19]. Improved algorithms have been published by Woo and Choe [100]
and Chang, Despain, and DeGroot [10].

The method of ordering literals for parallel execution in AND processes in
the AND/OR Process Model is dynamic. An execution order is determined
at runtime, when the clause is invoked, and may change depending on the
binding of terms by descendant OR processes (Section 6.1). To avoid this run-
time overhead, DeGroot devised a technique for ordering literals at compile
time, and checking the binding status of variables to make sure the ordering
remains valid [25]. The runtime overhead is minimal, and the amount of par-
allelism lost due to a more conservative ordering may not be too high. The
idea of ordering literals at compile time, and using this information to guide
backtracking in a sequential system, was explored by Chang and Despain [9].

Three are three other models based on compiling clauses into dataflow
graphs. Ito et al[45, 46] compile clauses into lower level dataflow operators.
Clause heads are compiled so the first level of unification is done in parallel,
but a later consistency check operator negates much of the effect of parallel
unification. Multiple solutions are generated by a join operation defined for
streams of solutions from OR processes.

The model of Kacsuk [47] is based on compiling clauses into history sen-
sitive dataflow operators. Operationally, the system is very close to the
AND/OR Process Model. The kinds of tokens correspond to the types of

Models for AND Parallelism 55

messages in the AND/OR Process Model, and the actions of OR nodes in
the dataflow graph mirror the actions of OR processes. AND-parallel oper-
ations are synchronized to a greater extent, exploiting less parallelism as a
result. The method for backtracking or otherwise generating all results is not
specified.

Bic’s model [2] was described previously, in the section on OR parallelism.
The compiled graph is the dual of the graphs created in the other dataflow
models. In an assertion graph, the collection of ground terms in arguments
of assertions in the program are the nodes of the graph, and arcs connecting
nodes are labeled with procedure names.

Other AND-parallel models based on the notion of independent processes
have been developed. AND processes in the Sync model of Li and Martin [57]
do not use a parallel backtracking algorithm. Instead, they perform an in-
cremental join operation on the values returned by the parallel solution of
the literals. Analysis of the body of the clause is used to order the literals,
so the problems cited for the system of Taylor et al [83] will not arise here.
The ordering of literals also leads to improvements in the complexity of the
algorithm for joining the results.

In the REDUCE/OR Process Model of Kalé [48], “reduce processes” in-
corporate the actions of both AND and OR processes. Instead of one descen-
dant OR process per literal, there is one descendant per instance of a literal.
An instance is created for each possible unification of a literal with the head
of a program clause. Each instance sends results back independently, leading
to a higher degree of parallelism in the reduce process, since multiple results
are coordinated by OR processes in the AND/OR Process Model. As in the
Sync model, multiple results from a process are formed by a join operation
on the results from descendant processes. The order of solution of literals is
determined by a data join graph, the dual of a literal dataflow graph – arcs
represent literals and nodes represent ordering constraints.

Another model incorporating both OR parallelism and AND process style
AND parallelism was developed by Wise [99]. This system, named Epilog,4

uses annotations on variables to determine the order of solution of literals.
As in Concurrent Prolog, solution of a literal containing a variable labeled
with a question mark is prevented from binding the variable, so p(X?,Y!,Z@)

will not be solved until X is bound by solution of some other literal. The an-
notation on Y in this example means Y must be unbound before the goal is
solved, and it will be bound during the solution. The annotation on Z means
Z must be bound to an atomic term before solving the goal. Another mecha-
nism for scheduling literals in Epilog is the use of thresholds. If, for example,
p(X,Y,Z) has a threshold of two, when any two of the three arguments be-
come instantiated the AND process will start a descendant process to solve

4Not to be confused with the Epilog language of Pereira [71].

56 Parallelism in Logic Programs

the literal and bind the third variable. It is not mentioned how or if Epilog
creates the cross product of terms for nondeterministic goals.

3.2.3 AND Parallelism in the Goal Tree

The models for AND parallelism surveyed so far are all defined in terms of
processes that work on small independent parts of the computation. The
next two systems are similar to pure OR parallel systems in the sense that
they are defined in terms of parallel operations in a global search of a tree of
derived goals.

Dembinski and Maluszinski have defined a method for parallel expansion
of the goal tree [27]. Programs in this model are annotated with mode infor-
mation. Any literal on the frontier of the tree is a candidate for expansion.
The operations of this model are defined in terms of interleaved operations,
but, since the effects of reductions are local, there is potential for paral-
lel expansion. OR parallelism is not exploited; instead, the system uses an
intelligent backtracking method to generate all solutions.

The H-Prolog system of Nakamura [66] has a parallel search style of par-
allelism for both AND and OR parallelism. This system uses a global tree
of resolvents where AND-parallel node expansions are done by generating
resolvents for a number of literals within a node. The next level of nodes
in the search space is formed by joining all combinations of resolvents and
throwing away those with inconsistent bindings. For example, if three liter-
als are expanded from a goal, generating i , j, and k resolvents, respectively,
the next level in the search space will have up to i × j × k resolvents. The
complexity of the join operation is proportional to the size of the resolvents.
In a purely deterministic algorithm, such as divide and conquer, where the
input is split into two subproblems, the tree of resolvents after the join will
have a branching factor of one, i.e. the “tree” is a linear list. The length
of the resolvent grows exponentially with the depth of the tree as the input
problem is divided and more goals are added to the goal statement, and then
gets smaller as the primitive problems are solved. In nondeterministic prob-
lems allowing some amount of OR parallelism, the problem is compounded
by having a number of large resolvents at each level. Multiple solutions are
obtained from the set of surviving resolvents, so this system correctly handles
that problem. The policy for selecting nodes for AND-parallel expansion is
not specified.

3.2.4 Summary

Two different styles of AND parallelism are emerging. One style, called
stream parallelism in [21], is exploited by Parlog, Concurrent Prolog, and
other languages oriented toward system programming, where committed choice

Low Level Parallelism 57

nondeterminism is a valuable programming technique. The other style, typ-
ified by the AND processes of the AND/OR Process Model, is oriented to-
ward a more exploratory style of nondeterminism, replacing the backtracking
method of sequential systems with a semi-intelligent backward execution al-
gorithm. The AND process style is designed to work in conjunction with OR
process style OR parallelism.

As is the case with OR-parallel models, the process models are, at the con-
ceptual level, more modular. The binding environments and process state are
smaller and independent of one another. In the stream parallel model, shared
variables are communication channels, created when a clause is invoked and
passed on to descendant computations. As a result, goals at arbitrary loca-
tions in a goal tree must be coordinated, so that when one binds a variable
the other is signaled to proceed. Support for the communication channel will
constrain the design of runtime environments for these models.

Unlike the case with OR-parallel models, there have been attempts to
design systems to use both styles of AND parallelism. In the best of both
worlds, when producer literals create large structures, execution of producers
and consumers would overlap, and consumers would be able to reject pieces of
the structure, forcing producers to generate different values for those pieces.

The combination of both styles of AND parallelism has an aesthetic ap-
peal, as well. Logic programming is distinguished from other models of com-
putation by logical variables and nondeterminism. Stream parallel models
take advantage of partial bindings allowed by logical variables, using this
feature for object oriented programming and other elegant techniques, but
at the expense of exploratory nondeterminism. AND process models are
the opposite, sacrificing parallelism when partial bindings are present but
able to exploit nondeterminism. Definition of a unified model featuring both
distinguishing characteristics of logic programs is a worthwhile goal.

3.3 Low Level Parallelism

Systems exploiting low level parallelism seek to speed up the operations in a
standard interpreter, as opposed to modifying the overall search strategy by
performing more than one inference at a time. A global view of control in
such systems still shows a depth-first search of a goal tree.

Development of techniques for speeding up sequential logic programs is
worthwhile in its own right. When Prolog programs are compiled instead of
interpreted, an order of magnitude improvement is seen [97]. It is reasonable
to expect low level support at the machine level to provide an additional order
of magnitude. Research in this area is bound to pay dividends for parallel
systems as well. Definitions of microprogrammed or VLSI algorithms and
machine level representation of terms and binding environments will certainly

58 Parallelism in Logic Programs

be useful in parallel machines.
Another potential benefit is the use of special purpose sequential machines

as the building blocks in a parallel machine. Some parallel machines, such
as the one built by Kumon, et al, are collections of single processor Prolog
machines. One advantage is that when the system is overloaded, it can
switch to a sequential operating mode, so that it does not generate more
parallel tasks. If every node in the system is busy, there is no point in further
distributing work, and communication overhead will be less in sequential
mode.

However, this idea must be implemented carefully in parallel logic ma-
chines. It would be a good idea to switch operating modes, from a parallel
mode to one where less parallel activity is generated. It would be a bad idea
to switch models, for example from pure OR parallelism to depth-first search.
Different models generate different sets of results, depending on whether or
not they tolerate infinite branches. Results found in a pure OR-parallel sys-
tem may not be generated by a depth-first search. If the system switches
models depending on system load, users will be faced with a situation where
a result is returned when the system is not busy, but not when the sys-
tem is overloaded; a procedure that works by itself might not succeed when
embedded in a large program.

Techniques for exploiting low level parallelism fall into two broad cate-
gories. The first is parallel unification. Since unification is the heart of logic
programming, the “inner loop” executed during every step of the program,
it makes sense to speed it up as much as possible. The second category is
parallelism in the control mechanism, in other words instruction pipelining.

Intuitively one would think it difficult to unify different arguments of two
input literals in parallel, since bindings in the arguments must be consis-
tent. When a term such as p(A,f(g(A))) is unified with another term, the
algorithm must check for consistent bindings of A, and possibly look inside
structures to determine bindings. Formal arguments for why unification is
“probably not parallelizable” can be found in an article by Dwork, Kanel-
lakis, and Mitchell [30]. However, as Lindstrom points out, the average case
for unification in logic programs does allow parallelism [58]. In that paper
Lindstrom presented a parallel unification algorithm based on synchronizing
access to variables in a stack frame. An atomic “check and bind” operation
assigns a value to a slot if the slot is unbound, or returns the current value
so a consistency check can be performed if the slot is already bound.

The approach taken by Robinson is to divide unification into two phases,
a pattern matching phase followed by variable dereferencing and binding [75].
Pattern matching is handled by a special purpose content addressable mem-
ory; it returns information about the variables that must be dereferenced to
the control processor. Robinson discusses how such a memory could enhance
the execution of a Prolog processor in the construction and access of Prolog

Chapter Summary 59

style binding environments.
The idea of compiling Prolog clauses into lower level machine instructions

is due to Warren [90, 95]. In this technique for implementing programs, uni-
fication is carried out by a sequence of virtual machine instructions. Calls to
a clause are compiled into instructions to place terms in argument registers,
and clause heads are compiled into instructions to test the contents of the reg-
isters against the terms in the head. Calls to a general unification procedure
are thus replaced with sequences of instructions tailored to each individual
clause head. The instructions are executed sequentially, so this corresponds
to a sequential unification. Low level parallelism in this system is obtained
from pipelining the virtual machine instructions. Tick and Warren designed
a three-stage E-unit as the heart of instruction execution in their system [85].
Early simulation results of a system with two E-units were discouraging [84].
The goal was to see if low level dispatching of unification instructions would
naturally lead to parallelism in unification due to different arguments being
unified in different E-units. However, since the E-units were synchronized
between procedure calls, the percentage of time both were busy was quite
low.

Other machines designed for sequential Prolog execution, but exploring
new representations and methods which may eventually have a bearing on
parallel machines, are PLM [29], PEK [49], PSI [81], and HPM [67].

3.4 Chapter Summary

Two basic forms of parallelism in logic programs were identified in this chap-
ter, and numerous systems exploiting both forms were surveyed.

OR parallelism is parallelism in creating multiple results. When there is
more than one way to solve a goal, OR parallelism can be used to compute
the results in parallel. OR parallelism serves the same purpose in parallel
models that backtracking does in Prolog. It is associated with the exploratory
nondeterminism of search problems, a valuable technique in AI programming.

AND parallelism is parallelism in computing any one result. It is asso-
ciated with parallel execution of deterministic or committed choice nonde-
terministic algorithms. It corresponds to the parallelism found in functional
programs. If we are to exploit parallelism in a logic program for a deter-
ministic algorithm, one based on divide and conquer for example, it must be
through AND parallelism.

Models combining AND and OR parallelism typically pay a penalty in the
form of higher control overhead. Pure OR-parallel models (corresponding to
parallel search of a goal tree) require very little coordination among search
processes. Adding AND parallelism requires policies for deciding which goals
to solve and methods for checking the consistency of the results. AND-

60 Parallelism in Logic Programs

← p ∧ r ∧ q.

← q ∧ r. ← q ∧ r. ← q ∧ r.

← r. ← r. ← r.

�
�

�
�

��

Q
Q

Q
Q

Q
Q

QQ

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

A
A
A
A
A

A
A
A
A
A

A
A
A
A
A

The area enclosed in a triangle below a node for a goal G represents a portion
of the goal tree used to derive a solution for one literal L in G. The bottom
of the triangle represents a cut containing only fail nodes or active nodes
where the goal statement is G with L resolved away. There will be n such
goals, where n is the number of solutions of L. In this example, if the solution
of q does not depend on p, the subtrees rooted at these nodes represent n
identical computations of q.

Figure 3.8: Duplicate Computations in a Goal Tree

parallel models that allow multiple results from OR parallel components re-
quire a join operation or other method for collating results. It is a good
question as to whether the overhead is worth it. Why not design a sys-
tem to exploit one form or the other, depending on the most likely type of
application?

From the perspective of AND-parallel models, the argument to include
OR parallelism is the same as the argument to include exploratory nonde-
terminism. Adding nondeterminism would add control overhead in the form
of choice points and backtracking information if implemented sequentially,
or multiple environments if implemented in a parallel fashion. This form of
nondeterminism is one of the two things that distinguishes logic program-
ming from other models of computation. If it is left out of the system, large
classes of interesting problems become much harder to program, among them
natural language parsing, database queries, and state space searches.

From the perspective of an OR-parallel system, the argument to include
AND parallelism is more compelling. If a subset of goals at a node in the
goal tree can be solved in parallel, there will be some speedup in the overall
solution. More importantly, if they are not solved in parallel at the higher

Chapter Summary 61

← p ∧ r ∧ q.

m
← r. ← r. ← r.

��������

@
@

@
@

�� @@

×

PPPPPq

�
�

��	

⇓

In this diagram, two independent derivations are started simultaneously, each
based on a single literal. The results of each derivation are combined to form
processes to solve the remaining goal from the original goal statement. When
p and q are independent, q is solved once, not once for each solution for p.
This is the strategy used in the AND/OR Process Model.

Figure 3.9: Combined AND and OR Parallelism

level of the tree, they will be solved many times over in descendant nodes.
This is illustrated in the tree of Figure 3.8. The root node has three goals:

← p ∧ q ∧ r.

If there are n solutions to p, there will be exactly n nodes in the tree contain-
ing the same goal statement, with the goals p ∧ q. These will be descended
from the nodes corresponding to the last step in any solution of p. If solution
of p determines the solution of q, for example if the original goal is

← p(X) ∧ q(X) ∧ r(X).

and each solution of p binds X to a different term, then the n nodes represent
n different problems. If solution of q is independent of p, e.g., the goal
statement is

← p(X) ∧ q(Y) ∧ r(X,Y).

then we will solve the same problem n different times. The best plan is to
solve p and q in parallel when they are independent. The interpreter should
grow trees for both p and q and combine the results to set up solution of
r (Figure 3.9). The next three chapters will describe how the AND/OR
Process Model provides a framework for this type of parallel solution based
on a combination of OR parallelism and AND parallelism.

62 Parallelism in Logic Programs

Chapter 4

The AND/OR Process
Model

In the AND/OR Process Model, a logic program is solved by a dynamic set
of processes that communicate via messages. Processes can be described as
actors, objects with discrete states updated in an atomic operation triggered
by the receipt of a message from another process [41]. A process will be
created to solve a small portion of a logic program. Its state transforma-
tions reflect its progress in executing the portion of the program, and it will
terminate after all solutions to its subproblem have been found.

There are two types of processes. An AND process is created to solve
a goal statement, a conjunction of one or more literals. An OR process is
created by an AND process to solve exactly one of those literals. If there is
a nonunit clause in a procedure for the literal, an OR process for the literal
will start an AND process for the body of the clause. A computation can be
described by an AND/OR tree of processes, with the initial goal statement
defining an AND process at the root of the tree. Messages are used to start
and cancel descendants and return results to higher levels of the tree.

This chapter lays out the basic requirements of AND and OR processes
and the types of messages they generate. The processes defined in this chap-
ter are sequential in nature: at any step, a process will send a message to
one other process, and wait for a response to the message before continuing.
With sequential processes, the system simply mimics a depth first interpreter,
replacing procedure calls by messages. The purpose of this chapter is to show
that logic programs can be interpreted by independent, cooperating processes
as opposed to a sequential interpreter searching a tree of resolvents. Later
chapters will introduce parallelism by showing how a process sending multiple
messages in certain steps executes its portion of the program in parallel.

63

64 The AND/OR Process Model

4.1 Oracle

The decomposition of a logic program into a set of AND and OR processes
is based on the notion of an oracle, an interpreter or machine which solves a
problem in one step relative to the interpreter that consults it [44].

The use of oracles in defining independent computations in logic can be
illustrated using the following definition of a function to compute the sum of
the squares of two integers:

ssq(X,Y,Z) ← product(X,X,X2) ∧ product(Y,Y,Y2) ∧
sum(X2,Y2,Z).

A goal using this clause to compute the sum of the squares of the integers 1
through 4 is:

← ssq(1,2,A) ∧ ssq(3,4,B) ∧ sum(A,B,C).

The first four goal statements derived from this goal by a depth first in-
terpreter, given suitable definitions of product and sum to do arithmetic
operations in one step, are:

← product(1,1,X2) ∧ product(2,2,Y2) ∧ sum(X2,Y2,A) ∧
ssq(3,4,B) ∧ sum(A,B,C).

← product(2,2,Y2) ∧ sum(1,Y2,A) ∧ ssq(3,4,B) ∧
sum(A,B,C).

← sum(1,4,A) ∧ ssq(3,4,B) ∧ sum(A,B,C).

← ssq(3,4,B) ∧ sum(5,B,C).

After four steps, the interpreter has solved ssq(1,2,A) and bound the vari-
able A to the term 5. All four steps are part of the solution of ssq(1,2,A);
no resolutions in this sequence are based on any other literal from the initial
goal statement. The last goal statement shown above contains every literal
except ssq(1,2,A) from the initial goal. We say the literal ssq(1,2,A) has
been resolved away.

An important thing to notice about this sequence is the set of variables
in the resulting goal statement after the first literal has been resolved away:
the only variables from the initial goal instantiated during this sequence of
resolutions are those occurring in the literal that was resolved away. No
other variables from the original goal statement can be instantiated. In this
example, the variables of the original goal are A, B, and C; only A occurs in
ssq(1,2,A), so A is the only variable from the initial goal statement that
can possibly be bound when resolving away ssq(1,2,A).

Another important aspect of this sequence is the set of possible bindings
for A. The possible values for A come from the tuples of D1(ssq), the deno-
tation of ssq. What this implies is we can find a binding for A by consulting

Messages 65

an oracle for a solution to ssq(1,2,A) and then bind all other occurrences of
A in the original goal to the value supplied by the oracle. In other words, we
can derive the last goal statement in the example in one step if we consult
an oracle for the solution of the first literal.

For the general case, consider an interpreter that resolves away a literal
L from a goal statement G0:

L0 ∧ . . . Li ∧ L ∧ Lj ∧ . . . Lm

After a number of resolutions, we are left with a derived goal statement Gk

containing every literal from G0 except L:

L0 ∧ . . . Li ∧ Lj ∧ . . . Lm

This interpreter could have derived Gk from G0 in one step instead of n steps
by consulting an oracle to provide a tuple from D1(L), constructing a positive
literal L

′

with the terms from this tuple, and generating Gk by resolving G0

with L
′

. The correctness of this operation is based on the observation that a
procedure for a literal L with n solutions can be replaced by n unit clauses,
each corresponding to a tuple from D1(L); the positive literal L

′

is one of
these assertions.

An overview of the solution of a goal statement in the AND/OR Process
Model is as follows. An AND process is an interpreter created to solve a
conjunction of goals, which it does by starting an OR process to solve each
goal in the conjunction. OR processes are oracles with respect to an AND
process; they return solutions which, as far as the AND process is concerned,
are derived in a single step. One source of parallelism in the model is due
to the fact that an AND process can consult more than one OR process at a
time. Under certain conditions, an AND process can start an OR process for
one literal and then start another OR process while the first is still working
on its goal. For example, given the first goal statement of this section, a
parallel AND process would create two OR processes to work simultaneously
on the calls to ssq, and when both are done start an OR process for sum.

4.2 Messages

All messages sent during a computation are either from a process to one of its
immediate descendants, or from a process to its parent. Messages are never
sent between siblings or non-immediate ancestors. Messages sent downward
in the tree are start, redo, and cancel; messages sent upward are success and
fail.

The start message is self-explanatory. When a process has reached a state
where it has identified an independent subproblem, it creates a descendant
process (with appropriately defined initial state) and sends it a start message.

66 The AND/OR Process Model

A success message is sent by a process to its parent when it has solved
the task given to it. The task is represented by a set of literals. The success
message contains a copy of the set of literals, with variables instantiated as
necessary. For example, if the subproblem is to solve the literal p(X), and it
can be solved by binding X to 0, the success message will contain the term
success(p(0)). Note that when the process sending the message is an OR
process, the argument of the message is the positive literal L

′

alluded to in
the previous section.

A fail message is sent when a process cannot solve its problem, or after
it has produced the last solution. After sending a fail message, the process
terminates.

When a process has received an answer from a descendant, and later finds
it cannot use that answer, it sends a redo message to the descendant, telling
it to solve its subproblem in another way. This means the parent needs a
different set of bindings for the variables in the subproblem.

Finally, a process may reach a state where it will never use any success
messages a descendant may send, in which case it sends the descendant a
cancel message. Any process reading a cancel message terminates immedi-
ately.

4.3 OR Processes

An OR process is a process created to solve exactly one literal. The basic
requirements for an OR process will be described in this section. A detailed
description of a parallel OR process, one with many descendants operating
in parallel, is the subject of the next chapter.

An OR process for a literal L must search the entire program for a clause
with a head unifiable with L. A sequential OR process searches the program
linearly, from top to bottom, stopping when it encounters a clause with a
head that unifies with L. If there are no such clauses, the process sends its
parent a fail message and terminates.

There are two cases to consider when a unification succeeds, depending
on whether the clause is a unit clause or not. If L unifies with a unit clause,
the OR process can immediately construct a success message for its parent.
For example, if L is p(a,X), and the program contains a unit clause

p(Z,b).

the OR process sends success(p(a,b)).
If L unifies with the head of an implication, the OR process starts a

descendant AND process to solve the body of the implication. For example,
if L is p(a,X,Y), and the program contains the implication

p(V,W,c) ← q(V) ∧ r(W).

AND Processes 67

an AND process will solve the goal statement

← q(a) ∧ r(W).

If the descendant AND process sends the message success(q(a) ∧ r(b)),
denoting the fact that X was bound to b, the OR process will send its own
parent a success message, in this case success(p(a,b,c)).

It is important to note that the parent of the OR process does not receive
any information about the direction of the solution of the goal until it re-
ceives a success or fail message. In particular this means none of its variables
are bound in the unifications performed by the OR process. The variables
in an AND process are bound only when it receives a success message con-
taining the bindings. This is an important consideration for parallel OR
processes, since conflicting bindings may be generated by different clauses in
the procedure.

If an OR process receives a redo message from its parent, it must solve
its problem another way. Again, there are two possibilities, depending on
whether or not the previous answer was based on a unit clause. If the previous
answer was formed from a unit clause, the sequential OR process must resume
its search for another clause to unify with L. This could lead to the creation
of a new descendant (if L unifies with the head of another implication), an
immediate success (if L unifies with a unit clause), or failure (if there are
no more clauses with heads that unify with L). If the previous answer was
obtained from a nonunit clause, i.e. it was based on a success from an AND
descendant, the descendant is sent a redo message, and the OR process waits
for a response from the descendant.

When an OR process receives a fail message from an AND descendant,
it must use another clause to solve L. As in the case where a redo message
arrives after a solution by a unit clause, the process resumes the search for
another clause to unify with L, leading to a new descendant to replace the
failed descendant, or an immediate success, or failure.

An OR process sends a cancel message to its descendant only when it
receives a cancel from its own parent.

4.4 AND Processes

An AND process must solve all of the literals in the goal statement given
to it by its parent. The literals are solved by descendant OR processes,
one for each literal. A sequential AND process solves the goal statement
much the same as a depth-first sequential interpreter. An OR process is
created for the leftmost literal of the goal statement. If the OR process
sends a success message, bindings in the answer are applied to the remaining
unsolved literals, and an OR process is started for the next literal in the goal

68 The AND/OR Process Model

statement. If the OR process sends a fail, another solution must be found for
the most recently solved literal, so a redo message is sent to the OR process
for that literal.

An AND process sends its parent a success after all descendant OR pro-
cesses have sent successes. A sequential AND process fails if its first literal
cannot be solved, i.e. if the OR process for the leftmost literal sends a fail
message. When an AND process receives a redo from its parent, it in turn
must send a redo to one of its own descendants; in a sequential AND process,
this will be the process for the rightmost literal.

4.5 Interpreter

A complete interpreter based on the AND/OR Process Model, executing
logic programs by decomposing them into AND and OR processes, has been
implemented in DEC-10 Prolog. Since both AND and OR processes can
be either parallel or sequential in nature, there are actually four different
interpreters. All interpreters share the same kernel of scheduling procedures,
performance measuring routines, message passing primitives, and other low
level supporting code. The measurements and examples shown in the figures
in this chapter are from the interpreter APOP (And Parallel – Or Parallel).

After it solves a problem, the interpreter prints out the number of pro-
cesses created, and, for each process, the number and size of each kind of
message sent. Associated with each process and each message is a “time
stamp,” represented as an integer. The interpreter is able to use this infor-
mation to generate plots, such as the one in Figure 4.1, showing the relation-
ship between the transformations performed on the processes. The vertical
axis represents the number of processes. The horizontal axis represents time,
with the transformations of one process plotted on one line. The interpreter
records the fact that each transformation takes one time unit. When a mes-
sage bearing time stamp t triggers a transformation causing other messages
to be sent, the new messages will have time stamp t + 1. If the interpreter
transforms process number P at time t, a dash will be plotted at coordinates
(P, t). Note that if P sends a message to Q as part of the transformation
plotted at (P, t), there will be a dash at (Q, t + 1) as a transformation of Q
is triggered by this message. The plot in Figure 4.1 was produced by the
solution of

← paper(P,1978,uci).

with interpreter APOP and the program of Figure 2.2 (page 10).
The plots provide an estimate of the amount of parallelism possible.

Wherever there are two dashes plotted for the same time (same column),
there is the possibility that two processing elements could be performing

Interpreter 69

- -- -- -- -

- - -- - - - - < OR process: paper(P,1978,uci)

- - - - - - - - - - - < AND process (2nd implication)

- -- - - - - - - - - - - < AND process (1st implication)

- - - - -

- - - - -

- -

-

-

-

- -

- -

-

-

-

15 processes executed 62 steps in 28 time units: 2.22

Message Summary: 69 messages sent, using 573 characters.

Process Succ/Size Fail Redo Start Cancel

1 3/91 1 3 1 0

2 3/85 1 2 2 0

3 1/35 1 4 5 4

4 1/58 1 5 6 5

5 4/93 1 0 0 0

6 4/93 1 0 0 0

7 1/23 1 0 0 0

11 1/26 1 0 0 0

12 1/19 1 0 0 0

Plot and message summary for all three solutions to← paper(P,1978,uci)

(see program in Figure 2.2). The transitions of process 2, the parallel OR
process for paper(P,1978,uci), are explained in detail in Chapter 5. The
transitions of process 4, the parallel AND process for one of the clauses in
the definition of paper, are described in detail in Chapter 6. Processes 8–10
and 13–15 were edited out of the table; they all failed immediately, sending
only the one fail message.

Figure 4.1: Sample Interpreter Output

70 The AND/OR Process Model

the corresponding state transitions in parallel. Dividing the total number of
steps by the time required to generate a result is a measure of the amount of
parallelism in the program. The plots are not based on an actual parallel ex-
ecution. Such plots could only be generated by a system with an unbounded
number of processing elements, each dedicated to solving just one process,
where each processor is capable of passing a message to any other processor
instantaneously. This interpreter was built to see if there is parallelism to
be found in the execution of logic programs; there is if the ratio of steps to
time is greater than one. The problem of mapping processes onto processing
elements, of “distributing the dashes” for a parallel solution on a physical
network of processing elements, will be discussed in Chapter 7.

4.6 Programming Language

Many of the extensions to the formalism of logic programming included in
most Prolog systems are meaningful only in single processor, sequential sys-
tems. Most notable are assert and retract, goals that modify the database
of clauses in the program, and the cut operation, used to guide the global
search process.

The language supported by the AND/OR Process Model also has some
extensions to the formalism, but only where no assumption is made about
the number of processors available to interpret the program or about whether
the processors have access to a common memory. The underlying hardware
is presumed to be a collection of asynchronous, autonomous processing el-
ements, or PEs, each with its own local memory and its own copy of the
program being interpreted.

The extensions to logic programming supported by the interpreter are:

• The evaluable predicate is, for performing arithmetic operations (Sec-
tion 2.4.1).

• Definition of← and ∧ as infix operators, and the DEC-10 Prolog evalu-
able predicates =.. and call, in order to describe higher order func-
tions.

• Negation as failure.

• Conditional expressions.

The last two extensions, negation and conditional expressions, are imple-
mented in Prolog through use of the cut symbol (Section 2.4.3). The same
behaviors can be implemented in the AND/OR Process Model, but by using
specially defined processes instead of cut.

Chapter Summary 71

Negation as failure is implemented by a special OR process for literals of
the form not(G). This OR process creates an AND descendant to solve G.
If the descendant returns a fail message, the OR process sends success(G)

to its own parent; if the descendant sends success(G) the OR process sends
fail to its parent and cancel to the descendant. This definition of negation is
comparable to the usual definition in Prolog, in the sense that it is a correct
interpretation only when G is ground (contains no unbound variables).

Conditional expressions can be written in DEC-10 Prolog, using a right
arrow and semicolon as infix predicate symbols:

f :- p -> q ; r.

The Prolog interpreter treats this operationally as as if it were defined by
two separate clauses, the first containing a cut symbol:

f :- p, !, q.

f :- r.

One way of implementing conditional expressions in the AND/OR model also
involves translation into two new clauses, but neither contains a cut symbol:

f ← p ∧ q.

f ← not(p) ∧ r.

Another method for implementing conditionals, by using special AND pro-
cesses, is presented in Chapter 7.

4.7 Chapter Summary

The AND/OR Process Model provides a framework for execution of logic pro-
grams where an interpreter solves a goal by dividing it into independent pieces
for solution by other interpreters. The independent interpreters are processes
communicating with their parent processes via messages. The processes in
this model are objects with state variables that are updated in an atomic
operation when a message triggers a state transformation. The description
presented in this chapter concentrated on the behavioral requirements of the
processes, specifying how a process must respond to the different types of
messages. A global perspective of the computation performed by these se-
quential processes would show the same computation carried out by a depth
first interpreter, since the same inferences are generated, and in the same
order.

A major difference between the process model and the depth first search is
in the binding environments used to represent values of variables. In typical
depth first interpreter, a highly intertwined, global stack of environments is
built. The binding stack and its supporting data structures require a single

72 The AND/OR Process Model

memory space in the underlying hardware. The AND/OR Process Model, on
the other hand, presents a method for interpretation by small, asynchronous,
and logically independent processes communicating only through messages.
Variable bindings are localized, stored in the state variables of the processes.
Thus the first step in the design of a highly parallel architecture for logic
programs has been taken: it has been shown how a logic program can be
executed by independent interpreters. The next step is to show how these
interpreters can exploit parallelism by starting a number of processes to carry
out subtasks simultaneously.

Chapter 5

Parallel OR Processes

An OR process is an independent interpreter created to solve a goal state-
ment of exactly one literal. An OR process created to solve an n-ary literal
p(X1 . . . Xn) is expected to return every tuple in the set D1(p), i.e. it must
construct bindings for the variables of the literal through a proof of a goal
containing only this literal.

If a procedure for p is defined by more than one clause, a sequential OR
process operates like a depth first interpreter, returning results according to
an order defined by the text of the program. All answers based on the first
clause are returned before the first result from the second clause, and so on
up to the last tuple of values defined by the last clause.

Relations are unordered sets of tuples, so the ordering of tuples according
to the lexical order of clauses is not part of the meaning of a predicate. A
parallel system could construct D1(p) by interleaving tuples defined by the
various clauses in the procedure. The parallel OR processes defined in this
chapter attempt to construct answers based on all clauses simultaneously,
returning results as the messages from the descendant processes arrive. The
order of tuples depends only on the timing of the incoming success and fail
messages from descendants.

5.1 Operating Modes

When an OR process is first created, it assumes its parent AND process is
waiting for an answer. The first result constructed by the OR process should
be sent via a success message to the parent. After this, however, the OR
process should save the answers, not sending the next one to the parent until
it receives a redo message. The OR process acts as a message center, deciding
when to transmit results and when to store them.

73

74 Parallel OR Processes

'
&

$
%

'
&

$
%

'
&

$
%

� �

� �

%&
6

?

- �

�
�
�

� �
C
C
CW�

�
�

� �
C
C
CW

Gather Wait

Done

r/s

s/r

f/

s/sr

f/

r/

r/f f/f

A label x/y on an arc means incoming message x triggers the transition,
message y sent as a result of the transition. The choice of which transition
to take depends on the type of incoming message and the values of internal
state variables.

Figure 5.1: Modes of an OR Process

An OR process is in waiting mode when its parent is waiting for an
answer, and is in gathering mode when the parent is busy, using a result sent
previously. Processes will switch back and forth between these two operating
modes. The rules for changing from one mode to the other are based on the
order of success and redo messages received, and on the number of tuples
constructed but not yet sent to the parent.

5.2 Execution

The diagram of Figure 5.1 summarizes the transitions between waiting and
gathering modes. State transitions in the figure have labels of the form
X/Y, meaning the transition was triggered because the OR process received
message X, and as a result of the transition it is transmitting message Y,
where X and Y are either f for fail, s for success, c for cancel, or r for
redo. The details of the rules for executing state transitions are given in the
procedures of Figures 5.2 and 5.3.

Each state transition depends on the type of input message, the current
operating mode, and values in other internal data structures. The internal
state variables of OR processes contain unchanging information such as the

Execution 75

OR Process Algorithms

L: The literal being solved by the OR process.

DL, WL, SL, Mode: The state variables of the OR process.

To process a start message:

1. Initialize DL, SL, and WL to empty lists.

2. Repeat for each clause C in the procedure for L in which the head
unifies with L:

(a) If C is a unit clause, apply to substitution created during unifica-
tion to the head of C and add this instance to WL.

(b) If C is a non-unit clause, apply the substitution to C, start an
AND process for the body of C, and add a record for this process
to DL.

3. If DL and WL are both empty, send a fail message to the parent and
terminate (no clause head matched L).

4. If WL is empty, set Mode to waiting; otherwise, remove one result from
WL, add it to SL, send it in a success message to the parent, and set
Mode to gathering.

Figure 5.2: Starting an OR Process

goal being solved and parent process ID, as well as dynamic information
representing the state of the computation. The dynamic information consists
of the following state variables:

DL: A list of descendant processes.

WL: A list of results waiting to be sent to the parent process.

SL: A list results already sent.

Mode: The operating mode, either waiting or gathering.

When the OR process receives a start message from its parent, it attempts
a unification of its literal L with the head of each clause in the procedure
for L. If there is no clause with a head unifiable with L, the OR process
fails immediately. Otherwise, a descendant AND process is created for each
implication with a head that unifies with L. If L unifies with the head of
at least one unit clause, a success message based on the unit clause can be

76 Parallel OR Processes

sent to the parent process and the OR process goes into gathering mode,
otherwise it goes into waiting mode.

Whenever a parallel OR process receives a success message from a descen-
dant, it responds by sending the descendant a redo, causing it to immediately
start working on its next answer. If the OR process was in waiting mode when
it received the result, it sends it to its parent, otherwise it stores it in WL.

Whenever an OR process receives a fail message from a descendant, the
corresponding item is removed from the descendant list. If the descendant
sending the fail message is the last active descendant and the parent is wait-
ing, the OR process fails.

By definition, an OR process is in waiting mode if its parent is waiting for
an answer, so a redo message from the parent in this case signals a system
error. Otherwise, if there are results in WL, one of them is sent back. If
there are no results but there is a possibility of future successes, i.e. there
are active descendants, the OR process switches to waiting mode. Finally,
if there are no active descendants and no further results in WL, the process
sends a fail message and terminates.

5.3 Example

The plot in Figure 4.1 (page 69) showed the complete solution of the goal

← paper(P,1978,uci)

Process 2 in that example was the OR process created to solve the single
literal in this goal. In this section we will examine each state transition in
the execution of process 2 in detail. The text of the program is given in
Figure 2.2 on page 10.

Figure 5.4 shows the states of the process after each message it receives.
In front of each state is a number enclosed in brackets used to identify the
transition, the message that causes the transition, and the time stamp on
the message. A summary of the state generated by processing the message is
given on the following lines, showing the values of the state variables repre-
senting the mode (gathering or waiting), the descendant list DL, the waiting
list WL, and the list of answers sent SL.

Each item in DL shows the ID of an active descendant process and the
head and body of the clause used to create the descendant. If and when the
descendant returns a success message, the argument of the message will be
a copy of the body of the clause solved by the descendant. The argument is
unified with a copy of the body in DL, thus instantiating the variables in the
head; the instantiated head is used as the argument in the success message
sent back to the parent of the OR process. Note that variables in the separate

Example 77

OR Process Algorithms

To process a success message:

1. Send a redo message to the process that sent the success.

2. Create a success message M based on the argument of the incoming
message.

3. If Mode = waiting, append M to SL, send M to the parent AND process,
and set Mode to gathering. (Transition labeled s/sr from waiting mode
in Figure 5.1.)

4. If Mode = gathering, append M to WL. (Transition labeled s/r from
gathering mode.)

To process a fail message:

1. Remove from DL the entry for the failed process.

2. If Mode = gathering, or Mode = waiting and DL is not empty, no steps
are taken. (Transitions labeled f/ from gathering mode and f/ from
waiting mode.)

3. If Mode = waiting and DL is empty, send a fail message to the parent
and terminate. (Transition labeled f/f from waiting mode.)

To process a redo message:

1. If Mode = waiting, signal a system error and terminate.

2. If WL is not empty, move a message from WL to SL and send it to the
parent in a success message. (Transition labeled r/s from gathering
mode.)

3. If WL is empty but DL is not, set Mode to waiting. (Transition labeled
r/ from gathering mode.)

4. If WL and DL are both empty, send a fail message and terminate.
(Transition labeled r/f from gathering mode.)

Figure 5.3: State Transitions of an OR Process

78 Parallel OR Processes

<1> (after ‘start’ from Process 1, T = 1):

Goal: paper(P,1978,uci)

Mode: gathering

DL: 3:[paper(P,1978,uci),[tr(P,uci),date(P,1978)]]

4:[paper(P,1978,uci),[date(P,1978),author(P,A),loc(P,uci)]]

SL: [paper(xform,1978,uci)]

WL:

<2> (after ‘redo’ from Process 1, T = 4):

Goal: paper(P,1978,uci)

Mode: waiting

DL: 3:[paper(P,1978,uci),[tr(P,uci),date(P,1978)]]

4:[paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

SL: [paper(xform,1978,uci)]

WL:

<3> (after ‘success([date(eft,1978)...])’ from Process 4, T = 14):

Goal: paper(P,1978,uci)

Mode: gathering

DL: 3:[paper(P,1978,uci),[tr(P,uci),date(P,1978)]]

4:[paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

SL: [paper(eft,1978,uci),paper(xform,1978,uci)]

WL:

Figure 5.4: States of a Parallel OR Process

clauses of DL are independent, so a success from one descendant does not
interfere with the variables in the DL entries for other descendants.

The first transition occurs when the process receives the start message
from its parent, process 1. Three clauses have heads that unify with the
goal literal, paper(P,1978,uci). The unit clause paper(xform,1978,uci)

is one the clauses with a matching head, so the message

success(paper(xform,1978,uci))

is sent to process 1 and used to initialize WL. The process is in gathering
mode in the output state. Processes 3 and 4 are created to solve the bodies of
the other two clauses. WL is empty since there was just the one unit clause
for paper.

The second transition is triggered by a redo message from the parent.
There are no answers in WL, so the process goes into waiting mode until a
message arrives from either active descendant.

Transition <3> occurs when one of the descendants, process 4, sends a suc-
cess message. The body of the success message is unified with the body stored
for the DL entry of process 4, creating the solution paper(eft,1978,uci).

Example 79

<4> (after ‘success([tr(df,uci)...])’ from Process 3, T = 15):

Goal: paper(P,1978,uci)

Mode: gathering

DL: 3:[paper(P,1978,uci),[tr(P,uci),date(P,1978)]]

4:[paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

SL: [paper(eft,1978,uci),paper(xform,1978,uci)]

WL: [paper(df,1978,uci)]

<5> (after ‘redo’ from Process 1, T = 17):

Goal: paper(P,1978,uci)

Mode: gathering

DL: 3:[paper(P,1978,uci),[tr(P,uci),date(P,1978)]]

4:[paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

SL: [paper(df,1978,uci),paper(eft,1978,uci),paper(xform,1978,uci)]

WL:

Figure 5.4 (cont’d)

Since the parent is waiting, this answer is not put on WL but sent immedi-
ately to process 1 and appended to SL. Process 4 is sent a redo message, and
the OR process goes back to gathering mode.

While the process is still in gathering mode, the other descendant sends
a success. A solution based on this message is added to WL, the descendant
is sent a redo message, and the process remains in gathering mode.

Transition <5> is triggered by a redo message from the parent. There is
a solution ready for it in WL, so it is moved from WL to SL and sent to the
parent.

The success message and redo message processed in transitions <4> and
<5>, respectively, could have arrived in either order. If they had arrived in
the opposite order than described above, the current state of the OR process
would be the same. The intermediate state would be different – the process
would be in waiting mode temporarily until the success message arrived –
but the net result is the same, with the process in gathering mode waiting
for a fourth solution, having sent the first three back to process 1.

The next message received is a redo message from the parent (transition
<6>). WL is empty, so the OR process goes into waiting mode.

The next transition occurs when one descendant sends a fail message.
The record of the descendant (process 3) is removed from DL, and the OR
process remains in waiting mode.

Once again, the messages that trigger transitions <6> and <7> could arrive
in either order, and the net result would be the same.

Finally, the last remaining descendant, process 4, sends a fail message.

80 Parallel OR Processes

<6> (after ‘redo’ from Process 1, T = 20):

Goal: paper(P,1978,uci)

Mode: waiting

DL: 3:[paper(P,1978,uci),[tr(P,uci),date(P,1978)]]

4:[paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

SL: [paper(df,1978,uci),paper(eft,1978,uci),paper(xform,1978,uci)]

WL:

<7> (after ‘fail’ from Process 3, T = 23):

Goal: paper(P,1978,uci)

Mode: waiting

DL: 4:[paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

SL: [paper(df,1978,uci),paper(eft,1978,uci),paper(xform,1978,uci)]

WL:

<8> (after ‘fail’ from Process 4, T = 26):

<done>

Figure 5.4 (cont’d)

There are now no more active descendants, and the OR process cannot derive
any more solutions. It sends its parent a fail message and terminates.

5.4 Chapter Summary

From the perspective of an AND process, a parallel OR process is similar to
the sequential OR process defined in the last chapter. Both are independent
interpreters, created to solve a goal containing exactly one literal. If the goal
is not solvable, an OR process returns a fail message. If the goal is solvable,
the process responds with a success message carrying bindings representing
one tuple from the denotation of the literal. Further results can be obtained
by sending the process a redo message. After all results are returned, it sends
back a fail message.

The difference between parallel and sequential OR processes is that par-
allel OR processes have multiple descendant processes active at any one time.
They act as message centers, queuing success messages from their descendants
in a list named WL until they are needed by their parents. The processes de-
scribed here also save the success messages sent to the parent in a list named
SL. The list is not strictly necessary, but it was included in the interpreter
because it provides useful debugging information. It gives a good indication
of the state of the process, in terms of how far along the process is in the

Chapter Summary 81

complete solution of its goal.
In the protocol described here, whenever a descendant sends a success

message, the OR process immediately responds with a redo message. An
interesting project for the future would be to experiment with other protocols
as a means for controlling the amount of OR parallelism. When the system
is busy, and WL contains enough answers, the OR process could simply wait,
sending the redo at a later time.

Sequential OR processes are sensitive to the order of the clauses in a
program. The order of the answers sent to a parent is a function of the
relative order of the clauses, and the results are always generated in the
same sequence. The order of results from a parallel OR process depends on
the order of arrival of messages from its descendants, and could vary from
one execution to the next.

One of the ramifications of interleaving results from different clauses is
that parallel OR processes may return more results than sequential inter-
preters. A simple example is in a program containing the clause

p ← p.

Any tree of resolvents containing a node with a call to p will have an infinite
branch. If there are other clauses following this one in the procedure for p,
derivations based on these clauses will be to the right of the infinite branch.
An interpreter performing a depth first search will be caught in an infinite
loop, never returning any results based on the remaining clauses. Sequential
OR processes will also be trapped in an infinite computation by this clause:
the body is used to start an AND process for the body, in this case the
single call to p; the AND process will start an OR process to solve p, and the
cycle repeats, generating an infinite branch in the dynamic AND/OR tree of
processes.

Parallel OR processes, on the other hand, are able to derive solutions
in this case. A parallel OR process creates the same infinite subtree as a
sequential OR process, but the parallel process obtains solution from AND
processes corresponding to other clauses for p or other clauses in the proce-
dure that called p. The AND/OR tree is expanded in parallel below an OR
process, and even though one of the subtrees may be infinite, other subtrees
to the right can provide solutions.

However, the use of parallel OR processes is not a guarantee that all
provable results will be generated. It is still possible to write a set of clauses
where the null clause is derivable through a series of resolutions, and the
control strategies of the AND/OR process model are not capable of deriving
any solution. These pathological cases will be described at the end of the
next chapter, since they concern the method for solving literals in the body
of a clause in parallel.

82 Parallel OR Processes

Chapter 6

Parallel AND Processes

Sequential AND processes, as defined in Chapter 4, simply mimic sequential
interpreters by solving their subgoals one at a time, from left to right. AND
parallelism is exploited in the AND/OR Process Model by having an AND
process create more than one OR process in certain transitions, and then co-
ordinating the responses to success and fail messages from these descendants
until all literals have been successfully solved.

A “brute force” method for AND parallelism in this model would be to
immediately create an OR process for every literal. There are three reasons
why this will not be effective, all based on the fact that solution of one literal
often binds variables in other literals.

The first problem is the requirement that every occurrence of a variable
must be bound to the same term in any solution. For example, given the
goal statement

← p(A,B) ∧ q(B,C) ∧ r(C,A).

the AND process has to find tuples <A,B,C> that satisfy all three predicates
at the same time. When OR processes for the three literals are working
independently, they may bind the variables to conflicting terms. A solution
for p(A,B) might be p(0,1), and a solution for q(B,C) might be p(2,3);
these are valid by themselves, but do not constitute a solution of the entire
goal statement. The AND process must signal the OR processes to continue
until a consistent binding is found for B.

A second argument against solving all literals at once is that by post-
poning the solution of a literal until some of its variables are bound via the
solution of other literals, the corresponding OR processes may be more ef-
ficient: there are often fewer solutions, and fewer fruitless choices made in
constructing those solutions (Section 2.5).

83

84 Parallel AND Processes

Finally, and of most practical importance, some goals fail if an attempt
is made to solve them before a sufficient set of variables are instantiated.
These are the literals with thresholds or mode declarations (Section 2.4.1).
For example, in the goal statement

← length(L,N) ∧ X is 2 * N.

the goal of multiplying N by two fails unless N is instantiated to an integer in
the solution of the first goal. In this case it makes sense to postpone solution
of the second goal until the first is complete.

In the context of the AND/OR Process Model, then, an effective method
for achieving AND parallelism is a problem of correctly ordering the literals
in the body of a clause, of deciding which literals must be solved sequentially
and which can be done in parallel. The implementation of AND parallelism
defined in this chapter has three major components. There is an ordering
algorithm that automatically decides, based on the current state of the goal
list, the solution order of the literals. The forward execution component
actually creates the descendant OR processes; it handles success messages,
determining which literals can be solved as a result. The third component,
known as backward execution, handles fail and redo messages, deciding which
literal(s) must be re-solved before continuing forward execution.

6.1 Ordering of Literals

The basis for the ordering of literals in the body of a clause is the sharing
of variables. Whenever two or more literals have a variable in common, one
of the literals will be designated the generator for the variable, and it will
be solved before the others. The solution of the generator literal is intended
to create a value for the corresponding variable. After the generator has
been solved, the other literals containing the variable, the consumers, may
be scheduled for solution. A generator will be defined for every variable in a
goal statement. It is possible that the solution of a generator will not bind the
variable, and consumers will still have a variable in common; this situation
is discussed in Section 6.2.

Generators and consumers are similar to the lazy producers and eager
consumers of IC-Prolog [18]. The term “generator” is used here, since their
action is more closely related to generators in other languages (see, for ex-
ample, Alphard [101]). They produce a sequence of independent terms, as
opposed to parts of a single complex term through a series of partial bindings.
Note that a literal can be the generator of some variables and a consumer of
others. This is especially true when the literal is a function call, when some
of the variables are bound to input arguments and the others, uninstantiated

Ordering of Literals 85

when the call is made, will be bound to output values by the execution of
the function.

There are similarities in the scheduling of literals in the AND/OR Pro-
cess Model and the Parlog and Concurrent Prolog languages discussed in
Chapter 3. On the surface, it appears those systems do not require literals
to be ordered, since processes are started for all literals simultaneously when
the clause is invoked. However, some of those processes immediately block,
waiting for input via the solution of other literals. In the AND/OR Process
Model, we delay creation of processes for the literals that would block im-
mediately. The mechanisms are different, but the basis for scheduling is the
same. On the one hand a process is created and then blocked until a shared
variable is bound, on the other the process is not created until the processes
it depends on have completed.

The differences reflect the different styles of programs the systems are
designed for. Parlog and Concurrent Prolog programs are either determinis-
tic, where it is known that processes will not fail, or the nondeterminism is
of the committed choice variety. The emphasis is on sending values to con-
sumers as quickly as possible, while overlapping execution with producers
when the values are large structures. The AND/OR Process Model is ori-
ented toward nondeterministic programs. Solution of nondeterministic goals
requires a complex pattern of messages between literals, routed through the
AND process. The explicit ordering is used to control operations in both
forward and backward execution.

6.1.1 Dataflow Graphs

Generator and consumer relationships can be represented by a dataflow
graph. In these graphs there is one node for each literal in a clause, and
a set of directed arcs for each variable. The arcs go from a generator to each
literal that consumes the corresponding variable. An immediate predecessor
of a literal L is a generator for one of the variables in L. A predecessor, in
general, is either an immediate predecessor or a predecessor of an immediate
predecessor. Successors and immediate successors are defined similarly.

The head of the clause corresponds to the literal being solved by the
parent OR process, and is included in the dataflow graph. It is the generator
of every variable occurring in the head that is bound when the process is
created, and the consumer of each of its unbound variables. There are two
nodes in the graph for the head literal. The node labeled HG represents the
head in its role as generator, and the node labeled HC is the head as consumer.
Representing the head with two nodes serves two purposes, both leading to
simpler algorithms for forward and backward execution: it allows graphs to
be acyclic, and we avoid having to treat the head as a special case. Since the
algorithms use this information, the head is included in the state information

86 Parallel AND Processes

of a parallel AND process and will be drawn in pictures of the graph.

6.1.2 The Ordering Algorithm

There are a number of rules one can use to identify generators. The first,
mentioned above, is the head of a clause is the generator for all variables
instantiated when the clause is invoked.

Second, some of the literals in the body may have I/O modes (Sec-
tion 2.4.1). The modes of evaluable predicates are already known by the
system, and mode declarations may be supplied for user-defined functions
as part of the program. A good example is the evaluable predicate is from
DEC-10 Prolog, with the mode declaration

mode(is,[?,+]).

This declaration shows that goals with predicate is have two arguments. A
plus means the corresponding term must be a ground term when a goal for
is is solved. In other words, is can never be the generator for a variable
occurring in a term in this argument position. A minus (not shown here)
means the corresponding argument must be an uninstantiated variable that
will be bound during solution of the literal. In this case, we know the literal
is the generator of the variable. If a variable occurs in “minus mode” in more
than one literal it is an error, detectable at compile time. A question mark in
a mode declaration means the mode is neither plus nor minus, i.e. the literal
can be either a producer or a consumer. Given the above mode declaration
and the goal

← . . . A is B + C . . .

a system may designate this call to is as the generator of A (but it is allowed
to choose another goal containing A), but this call cannot be the generator
for either B or C.

The two rules just described – the head is the generator of variables
that are bound when the procedure is called, and mode declarations can-
not be violated – are the only two strict rules for assigning generators. If
the constraints imposed by these rules are violated, the clause will fail. By
themselves, however, the two rules are not sufficient to designate generators
for every variable in the body of a clause, since we do not always have mode
information and clauses are often called without any head variables bound.
The two strict rules can be augmented by heuristics in order to complete the
process and make sure every variable has a generator. Different heuristics
lead to different orderings, enabling more or less parallelism in the solution,
but in all cases the AND process will not fail due to incorrect ordering.

A number of heuristics given in Section 2.5 for efficient sequential exe-
cution can be adapted for ordering literals in a parallel AND process. One

Ordering of Literals 87

The Literal Ordering Algorithm

B: The set of literals remaining to be ordered.

G: The set of variables for which generators have been specified.

U: The set of variables for which generators are not known.

Static Analysis (when a clause is loaded into the system):

1. Initialize G to be the empty set, and U to a set containing every variable
in the clause.

2. For each literal L which has a set of arguments A in positions marked
with mode -, if any variable in A is in G, signal a mode violation.
Otherwise assign L as the generator of all variables in A, and move the
variables from U to G.

3. For each literal L which has an argument with a mode declaration of
+, declare L to be a non-generator of the corresponding variable.

Dynamic Analysis (after a start message):

1. Initialize B to contain every literal in the body of the clause which is
not a generator (as defined in the static analysis).

2. For each variable V bound in the head, if a body literal is the generator
of V, signal a mode violation, otherwise add V to G, remove it from U,
and assign the head as generator of V.

In the following steps, a qualified literal is a literal which contains a
variable V currently in U but is not a non-generator of V.

3. (Apply heuristics). Repeat until B = ∅ or U = ∅:

(a) (Connection Rule). Make a set of literals LS with every qualified
literal in B which has at least one variable in U and one variable
in G.

(b) (Leftmost Rule). If LS is empty, let LS be the singleton set con-
taining the leftmost qualified literal in B.

(c) If LS is empty, terminate with failure. Otherwise, for every literal
L in LS, assign L as the generator of every variable occurring in L
which is also in U. Remove these variables from U and add them
to G, and remove L from B.

Figure 6.1: The Literal Ordering Algorithm

88 Parallel AND Processes

heuristic currently implemented is the connection rule, a special case of the
rule that calls for selection of the literal with the largest number of instanti-
ated variables. When the connection rule is applied, G is the set of variables
with generators already designated, and U is the set of variables without
generators. The generators of the variables in G form a partial graph. The
connection rule attempts to “connect” a literal to the partial graph by find-
ing a literal containing variables from both G and U. This literal will be
designated the generator for all its variables in U (Figure 6.1).

The last rule currently implemented is the leftmost rule, which simply says
the first (leftmost) literal containing a variable in U should be the generator
of that variable. This is a reasonable heuristic, since, in Prolog programs,
solution of a goal containing unbound variables often binds the variables.
When the leftmost rule selects the leftmost occurrence of a variable in U it
is selecting a literal that would see the variable as unbound if the clause was
solved with the ordering generated so far. This rule is also a useful safety
feature, since, by itself, it guarantees every variable will have a generator. If
all other rules fail to designate a generator, this one can be applied.

Since mode declarations are known before a clause is called, the second
rule can be applied at “compile time,” when the clause is first loaded into
the system. The other rules are applied at runtime, when the AND pro-
cess is created, since they depend on the pattern of variable instantiation in
the clause and this is established by the unification done by the parent OR
process. As mentioned in Chapter 3, literal ordering is done completely at
compile time and all dynamic ordering is avoided in the systems of Chang,
Despain, and DeGroot [10] and DeGroot [25].

An important requirement for the forward execution algorithms is that
dataflow graphs need to be acyclic. If mode declarations do not specify a
cycle in the graph, the dynamic steps will make an acyclic graph. If there
is a cycle of negative mode declarations, an acyclic graph is impossible. If
there is a cycle of positive mode declarations, an acyclic graph is possible
only if literals outside the cycle bind each variable in the cycle. For example,
in p(X,Y) ∧ q(Y,X) if p and q have plus modes for their first arguments,
a cycle of positive modes exists: p cannot bind X and q cannot bind Y. An
acyclic dataflow graph is possible only if other literals in the body become
generators of X and Y. The check for an empty set of literals in the last step
of the ordering algorithm is a hedge against negative cycles. If such cycles
are detected at compile time, this check can be omitted.

6.1.3 Examples

The ordering algorithm will be illustrated by four examples, each showing a
different pattern of variable instantiation in the body of a clause.

Ordering of Literals 89

Call:
← f(A,B).

Clause:
f(X,Y) ←
g(X) ∧ h(Y).

f��
��

g��
��

h��
��

f��
��

S
S

SSw

�
�

��/

X Y

Figure 6.2: Graph for Disjoint Subgoals

Disjoint Subgoals

f(X,Y) ← g(X) ∧ h(Y).

If neither X nor Y is bound when the clause is called, or if they are bound
to terms not containing a variable in common, the literals are independent.
Neither is a predecessor of the other, as shown in Figure 6.2 for the case
when both X and Y are uninstantiated when the process is created. The
leftmost rule was used to designate g(X) as the generator of X and h(Y) as
the generator of Y. Note that if there are ng solutions for g(X) and nh ways
of solving h(Y), then D1(f) will contain ng×nh pairs of X and Y values. The
remaining pairs, after the first, will be created in response to redo messages;
the method used to enumerate all pairs is described later in the section on
backward execution.

Shared Variable

gf(X,Z) ← f(X,Y) ∧ p(Y,Z).

The two subgoals have the variable Y in common, and no call to gf can
ever cause Y to be instantiated when a process is started. If, when the
AND process is created, Z is instantiated but X is not, the connection rule
selects p(Y,Z) as the generator of the shared variable Y. Otherwise f(X,Y)

is designated, either through the connection rule (if only X is instantiated)
or the leftmost rule (if neither or both head variables are instantiated). The
graph in Figure 6.3 shows the graph built when Z is bound but X is not.
This is an example where the connection rule leads to an efficient ordering
described in Section 2.5, based on the number of instantiated variables in
each literal in a database query style program.

90 Parallel AND Processes

Call:
← gf(G,a).

Clause:
gf(X,Z) ←
f(X,Y) ∧
p(Y,Z).

gf��
��

p��
��

f��
��

gf��
��

�
�

��/
-

�
�

��/

Y

X

Z

Figure 6.3: Graph for Shared Variables

Deterministic Function

f(P,Q) ← div(P,P1,P2) ∧ f(P1,Q1) ∧ f(P2,Q2) ∧
comb(Q1,Q2,Q).

This clause illustrates the general form of a “divide and conquer” style
function expressed as a clause. On every call, P will be bound to a term
representing the input problem, and as a result of the call Q will be bound
to a term representing the output of the function. The optimal ordering of
subgoals is: divide problem P into independent subproblems P1 and P2; then
solve P1 and P2 in parallel via the recursive calls, instantiating Q1 and Q2;
when both are done, construct answer Q from partial answers Q1 and Q2.
This sequence of events is implied by the picture in Figure 6.4. In the next
section, on forward execution, we will see how the AND process actually
carries out the parallel actions in this order. This graph can be produced
by repeated application of the connection rule; mode declarations are not
required. In general, however, mode declarations are needed to produce the
desired ordering for functions.

It is interesting to note that if f, div, and comb are relations, not func-
tions, and it is meaningful to call f with Q bound and P unbound, a similar
graph is built, the only difference being the direction of all the arcs. In other
words, if we call this procedure to “run backwards” to solve for P given Q, the
execution according to the graph we generate will be the same as traversing
“backwards” in the graph of Figure 6.4.

Map Coloring

color(A,B,C,D,E) ←

Ordering of Literals 91

Call:
← f(xx,Q).

Clause:
f(P,Q) ←
div(P,P1,P2)

∧
f(P1,Q1) ∧
f(P2,Q2) ∧

comb(Q1,Q2,Q).

f��
��

div��
��

f��
��

f��
��

comb��
��

f��
��

?

�
�

��/

S
S

SSw

S
S

SSw

�
�

��/

?

P

P1 P2

Q1 Q2

Q

Figure 6.4: Graph for Deterministic Function

next(A,B) ∧ next(C,D) ∧ next(A,C) ∧ next(A,D) ∧
next(B,C) ∧ next(B,E) ∧ next(C,E) ∧ next(D,E).

The goal of this procedure (Figure 6.5) is to see if there is an assign-
ment of one of four colors to each region of a map, such that no two adja-
cent regions have the same color. The procedure for next is simply twelve
ground assertions, one for each legal pair of adjacent colors. For example,
next(red,blue) is asserted, but next(green,green) is not. Also, for each
clause next(c1, c2) we need the corresponding clause next(c2, c1). Assum-
ing every map can be colored by four colors, then, the procedure for next

has twelve clauses.

The calls to next will succeed only if the arguments have been (or can
be) instantiated to terms representing different colors. There is one call to
next for each internal border in the map. This formulation of the map
coloring problem as a logic program was originally given by Pereira, Porto,

92 Parallel AND Processes

Call:
←
color(A,B,C,D,E).

Clause:

color(A,B,C,D,E) ←
next(A,B)

∧
next(C,D)

∧
next(A,C)

∧
next(A,D)

∧
next(B,C)

∧
next(B,E)

∧
next(C,E)

∧
next(D,E).

A,B��
��

A,C��
��

A,D��
��

B,E��
��

C,D��
��

B,C��
��

C,E��
��

D,E��
��

�

B
B
B
BN

�
�

�
�

��
�
�
�
�
���

@
@

@
@@R

�
�

�
��/

B
B
B
BN

Z
Z

Z
Z

ZZ~

����������

Z
Z

Z
Z

ZZ~

�

B
B
B
BN

A B

C D E

All nodes are calls to next; the labels show the arguments of the call. The
head node HG does not generate any values. The nodes in the top two rows
are all immediate predecessors of HC.

Figure 6.5: Graph for Map Coloring

and Bruynooghe in their papers on intelligent backtracking [7, 73, 74].
When this procedure is called with none of the variables in the head in-

stantiated, the graph in Figure 6.5 is created. The literal ordering shown
in the figure was produced by first using the leftmost rule to designate
next(A,B) as the generator for both A and B. After that the connection
rule was used to identify the three literals in the middle row of the graph as
generators of the other three variables, leaving the remaining four literals as
consumers. The role of non-generator literals in this problem is to check if
the assignments made by generators are valid for the rest of the map.

Not unexpectedly, the first values from the generators in the middle row
form an unacceptable combination of values for some of the consumers on the
bottom row. The third and fourth literals, working independently and in par-
allel, assign the same color to regions C and D, so one of the assignments will
have to change. There are a number of difficult problems presented by this
example, as the AND process tries to coordinate the four generators in order

Forward Execution 93

to create, eventually, every five-tuple of colors that satisfy the constraints
of this goal list. The general principles for solving this problem will be ex-
plained in the section on backward execution. A more detailed description
of a parallel solution of this problem will be given in Chapter 7.

6.2 Forward Execution

A forward execution step in an AND process consists of selecting certain lit-
erals for solution and starting OR processes for those literals. When a success
message arrives from one of the processes, OR processes can be started for
other literals. After all literals are solved, the AND process sends a success
message to its own parent. If any of the descendant OR processes fail, or
if the parent sends a redo message, then the backward execution algorithm
is invoked (Section 6.3). The overall goal of a parallel AND process is the
same as a sequential AND process – obtain a success message from the OR
process for each literal in the body. What differs is the order the processes
are created, and the handling of fail messages.

6.2.1 Forward Execution Algorithm

Forward execution can be explained with a mixed metaphor of graph
reduction and dataflow. Graph reduction, as a technique for executing func-
tional programs, refers to the reduction of a graph representing an expression
to a simpler graph representing the value of the expression; typically the sim-
pler graph is a single node. Here, we reduce the graph to an empty graph,
containing no nodes or arcs. The reduction step corresponds to resolving
away a literal from the body of the clause. We are interested in the sub-
stitutions required to perform the reductions, but not the final form of the
reduced graph.

The dataflow metaphor is used to explain the passing of information be-
tween literals. When a generator is solved, the bindings for its variables
“flow” to other literals containing the variables. Also, the firing rules of
dataflow are used to order the solution of the literals. A literal is enabled
when it has it has received values on all of its incoming arcs, i.e. when all of
its predecessors have been resolved away. As soon as a literal is enabled, an
OR process is created to solve it. This firing rule explains the need for an
acyclic graph; if there is a cycle in the dataflow graph, no literal in the cycle
can become enabled.

Literals in the body of a parallel AND process can be in three states:
blocked, pending, or solved. A literal is blocked when an OR process has not
yet been created for it. A literal is pending when an OR process has been
created for it but has not yet sent back any message. Finally, a literal is in

94 Parallel AND Processes

The Forward Execution Algorithm

G: The dataflow graph. pred(L) is the set of predecessors of literal L, and
succ(L) is the set of successors of L in G.

Solved, Blocked, Pending: State variables of the AND process, representing
the status of each literal.

To process a start message:

1. Call the literal ordering algorithm to create an initial graph G.

2. Initialize Solved to {HG}, Pending to the empty set, and Blocked to the
set containing every literal in the body.

3. For every literal L such that pred(L) ⊆ Solved start an OR process and
move L from Blocked to Pending.

To process a success message:

1. Apply the bindings contained in the message to the body.

2. Move the solved literal from Pending to Solved.

3. If all literals are in S, send a success message to the parent process, else
continue.

4. If the solved literal is a generator, and the terms bound by the generator
contain unbound variables, apply the heuristics of the literal ordering
algorithm to designate generators for these variables and update the
dataflow graph.

5. For each literal {L|L ∈ Blocked, pred(L) ⊆ Solved} start an OR process
and move L from Blocked to Pending.

Figure 6.6: Forward Execution Algorithm

Forward Execution 95

��
��
p(X)

��
��
q(X) ��

��
r(X) ��

��
q(a) ��

��
r(a) ��

��
r(a)

��
��
p(X)

��
��
q(X) ��

��
r(X) ��

��
q(X) ��

��
r(X) ��

��
r(a)

X

X

X

�
�

��

A
A
AU

�
�

��

A
A
AU

-

Start process for
p(X).

success(p(a));
start processes for
q(a) and r(a).

After q(a) suc-
ceeds; when r(a)

succeeds, the goal is
solved.

Start process for
p(X).

Variable not bound
by p(X); make q(X)
the generator for X.

After q(X) suc-
ceeds; start process
r(a).

Two different sequences of reductions of the goal← p(X) ∧ q(X) ∧ r(X).

In each case, p is the generator of X. In the bottom sequence, p does not bind
X to a ground term, so another generator has to be assigned for X.

Figure 6.7: Sample Graph Reductions

the solved state after an OR process has been created for it and the process
has sent back a success message. The status of a literal can be represented
by using sets to represent the blocked, pending, and solved literals. An
enabled literal is a blocked literal with all predecessors in Solved, in other
words pred(L) ⊆ Solved. When the process is initialized, all body literals are
placed in Blocked, Pending is empty, and Solved contains only HG, the head
of the clause.

A success message from an OR process for a literal L has the general form
success(Lθ), where Lθ is a copy of L with (possibly) some variables bound.
The forward execution step – the graph reduction operation – is accomplished
by resolving ¬Lθ with the current set of literals in the body of the clause.
If L is a generator of a set of variables, then some of those variables may

96 Parallel AND Processes

be instantiated in Lθ. Using the imagery of the dataflow graph, we can
envision tokens flowing along arcs from L to the consumers, as the resolution
of Lθ with the remaining literals causes those variables to be bound in the
resolvent.

The algorithm in Figure 6.6 shows the heuristics of the literal ordering
algorithm being applied after every success message. This is necessary for
cases when a generator does not bind its variable V, or else binds it to a non-
ground term containing a variable V2, for example when a goal p(V) is solved
by a unit clause p(f(V2)). When there is more than one consumer of V, they
will have a common variable in V2 after the generator is solved. Since literals
with variables in common are not solved in parallel, and since every variable
must have a generator, the ordering algorithm must be called again to select
one of the consumers of V to be the generator for V2 (Figure 6.7). When the
generator binds V to a ground term, one that contains no variables, this step
can be omitted. The current implementation of the interpreter makes the
simplifying assumption that generators bind variables to ground terms, and
all subsequent discussions will be based on this assumption.

6.2.2 Solution of a Deterministic Function

The combination of literal ordering and forward execution is sufficient for
parallel solution of clauses implementing deterministic functions. The distin-
guishing characteristics of clauses for deterministic functions are that there
is only one solution for each combination of inputs, the clause does not fail
when given a legal combination of input values, and the subgoals in the body
are also deterministic functions. These attributes mean AND processes for
deterministic functions never invoke the backward execution algorithm.

Matrix multiplication is a good example of a deterministic function that
has a parallel solution. A logic program for this function is shown in Fig-
ure 6.8. The head of the procedure is mm(A,B,C). When called, A and B

will be bound to terms representing matrices, and after the call, C will be
instantiated to their product. A matrix is represented as a list of rows, where
a row is represented by a list of integers.

The top level of the function is a call to transpose one argument, fol-
lowed by a call to a procedure that actually multiplies the matrices. A call
transpose(B,BT) binds BT to the transposed version of B; BT it is a list of
columns instead of a list of rows. After transpose succeeds, the problem is
to distribute all possible pairs of rows of A with columns of BT to the in-
ner product function. This is done by the two auxiliary functions, mmt and
mmc. The internal structure of these two procedures is identical: there are
two literals in the body of each; one literal is a call to a lower level function
with the first element of the input list, while the other literal is a recursive
call with the remainder of the list. The dataflow graphs for both functions

Forward Execution 97

To multiply two matrices, transpose the second, then form all inner products:

mm(A,B,C) ← transpose(B,BT) ∧ mmt(A,BT,C).

Pair up rows of A with columns of B, compute inner product:

mmt([],_,[]).

mmt([A1|An],B,[C1|Cn]) ← mmc(A1,B,C1) ∧ mmt(An,B,Cn).

mmc(_,[],[]).

mmc(A,[B1|Bn],[C1|Cn]) ← ip(A,B1,C1) ∧ mmc(A,Bn,Cn).

ip([],[],0).

ip([A1|An],[B1|Bn],C) ← ip(An,Bn,X) ∧ C is X + A1*B1.

To transpose a matrix, call columns to divide it into two parts: the first
column and the rest of the columns; then transpose the rest.

transpose([[]|_],[]).

transpose(M,[C1|Cn]) ←
columns(M,C1,Rest) ∧ transpose(Rest,Cn).

columns([],[],[]).

columns([[C11|C1n]|C],[C11|X],[C1n|Y]) ←
columns(C,X,Y).

Figure 6.8: Program for Matrix Multiplication

have two independent literals that can be solved simultaneously. The inner
product function used here is sequential in nature, since the results of the
multiplications are summed serially.

In analyzing the bodies of mmt and mmc we see the recursive call can be
done at the same time as the call to the lower level function, so the time
required to solve a problem of size n is proportional to the time required
to solve the largest subproblem, rather than the sum of times to solve both
subproblems. The time required to compute the product of the two matrices
in a call to mmt is the time required to distribute the last of the row/column
pairs to process that performs an inner product, plus the time required to do
that inner product. For the multiplication of n×n arrays, this is O(n+n+n),
or O(n). The parallelism seen here is identical to the parallelism obtained
in a dynamic dataflow system [37]. The plots produced by the interpreter
showed the ratio of number of steps executed per simulated time increasing at
a rate proportional to n2. This example supports the claim that parallelism
in deterministic functions can be exploited by the AND parallelism of the
AND/OR Process Model.

98 Parallel AND Processes

6.3 Backward Execution

Backward execution coordinates the actions of generators after the AND
process receives a fail or redo message. Backward execution in a parallel
AND process replaces the linear backtracking of a sequential AND process.
The purposes of each are the same: after a failure, determine which literal
should be re-solved, and send the corresponding OR process a redo message.
The difference is that backward execution is directed by the dataflow graph
of the clause and not the syntactic order of the clause body. The result is a
more efficient system and a method that works well in a parallel system.

6.3.1 Generating Tuples of Terms

In Chapter 2, an interpreter for logic programs was defined as a system
to construct the tuples of the denotation of a goal list. The tuples in the
denotation are a subset of all possible n-tuples of terms; the role of backward
execution is to coordinate the generators so that every tuple in the denotation
is produced, if possible, while at the same time generating as few extraneous
tuples as possible. A perfect method would generate only the tuples in the
denotation of the goal statement.

A new tuple is formed each time a generator binds a variable to a new
term. The key to an efficient backward execution method is identifying the
correct generator for making the next tuple; the proper choice can cut out
many erroneous tuples. Nested for-loops in a procedural language provide
one model for identifying this generator. As an example, consider a nested
loop implementation of the map coloring problem of Section 6.1.3:

for A := Red to Blue do

for B := Red to Blue do

for C := Red to Blue do

for D := Red to Blue do

for E := Red to Blue do

if Next(A,B) and ... and Next(D,E) then

Writeln(’success(A,B,C,D,E)’);

In this program, initial values are assigned to all variables, making the
initial tuple <red,red,red,red,red>. At each step, the current tuple is
tested by the boolean expression in the body of the loop. The second tuple
is created by assigning the innermost variable, E, its next value. Eventually,
blue, the last value, is assigned to the innermost variable. The next tuple
is obtained by resetting the variable E to its first value while assigning the
next-innermost variable D its next value. In general, whenever there are no
more values for a variable, the previous (outer) variable is given a new value

Backward Execution 99

and all later variables closer to the body of the loop are reset to their initial
values.

The drawback to this procedure for generating tuples is the large number
of invalid tuples. All 54 5-tuples of colors are generated, where the first
34 = 81 have the form <red,red,C,D,E>. Since A and B cannot have the
same color – there is a literal next(A,B) in the test – the Pascal program
blindly generates 81 unusable tuples. In the logic program, however, the
same procedure used to test terms can be used to generate them, meaning
“obviously” wrong tuples are never generated. The term next(A,B) is the
generator of A and B, and it never instantiates both A and B to the same
color, thus effectively preventing the construction of a large number of useless
tuples. The Pascal version can be made more efficient by moving tests closer
to the head of the loop as possible, but it still cannot be as efficient as Prolog,
in terms of the number of tuples generated.

The backward execution algorithm described here borrows the concepts
of ordering variables and resetting inner variables to previous values, and
incorporates them in a method that retains the advantages of the Prolog
implementation. It is more efficient than Prolog’s linear backtracking. By
selecting a backtrack literal according to the dataflow graph instead of the
program text, we get an effect closely related to intelligent backtracking (Sec-
tion 2.5.3). Further, by knowing when to reset a variable, we can sometimes
avoid recomputing its value.

6.3.2 Definitions for Backward Execution

The backward execution algorithm makes extensive use of the dataflow graph
of a clause when deciding which generator to select for a redo message and
which generators should be reset. The algorithm uses “traditional” relations
among literals, such as predecessor and descendant relations, but it also uses
some special purpose relations.

All of the relations are static with respect to the dataflow graph. Once
the graph is constructed, the relations can be determined. If the graph is
constructed completely at compile time, which is possible when enough mode
declarations are provided, one data structure can be built and shared by all
AND processes that solve instances of the same clause body.

We need a representation for the literals when they are used as arguments
of the relations. The technique used is to refer to a literal by a term #N, where
N is the place the literal occupies in the text of the clause. For example, in
the clause for the map coloring problem in Figure 6.5 on page 92, #2 refers
to next(C,D).

The first new relation is defined in terms of a linear ordering of generators.
We will say literal L1 follows L2 if L1 occurs later in the linear ordering
than L2. The only constraint on the ordering is that if literal L consumes a

100 Parallel AND Processes

variable V, L must follow the generator of V in the linear ordering. Given
this constraint, either a breadth first or preorder traversal of the graph is a
reasonable way to generate the linear ordering. The current implementation
uses a breadth first traversal.

When a literal L fails, one of the generators must compute new bind-
ings for its variables. While it would seem the predecessors of L in the
dataflow graph are the only candidates, in fact we must consider a larger
set. candidates(L) is the set of generators considered for selection as the
backtrack literal when L fails. G is a candidate for L if G is an immediate
predecessor of L or a predecessor of a successor of L. Examples showing the
reasoning behind this extended definition will be given later.

In addition to the relations between literals, we need to add a new data
structure, a set of marks for each generator, to the representation of an AND
process. During backward execution a generator will be marked with the
identity of a literal if the generator is a possible cause of the failure of the
literal.

The reset operation borrowed from the nested loop model must effectively
restart a generator. The generator does not have to produce the values in
the same order after a reset; it only has to provide all possible values when
they are required. Suppose a generator has created the bindings t1 . . . ti for
a variable at the time it is reset. The reset may come before the generator is
finished, i.e. the entire sequence might contain n > i terms. After the reset
the generator must start over on a new sequence of terms, but the new order
does not have to be the same as the old. Furthermore, it is free to generate
a term tj , j > i, that was not in the original sequence, before returning all
values from the original sequence.

6.3.3 The Backward Execution Algorithm

The backward execution algorithm is presented in Figures 6.9 and 6.10.
When a fail message is received from the OR process for a literal L, the OR

process for one of the generators must bind its variables to different values.
The first part of backward execution consists of identifying this generator,
which will be called BL. The second part consists of determining how to
update the variables generated by BL, and the third involves resetting other
generators.

Selection of the generator to redo is based on marks on the literals in the
candidate set for L. A mark X on a generator G means G may be directly
or indirectly responsible for the failure of X. The first thing to do is add
L to the set of marks on each predecessor of L. The selected generator is
the generator latest in the linear ordering marked with L or a successor of
L. The reason we check for successors of L can be explained by an example
based on the graph of Figure 6.5 on page 92. Suppose the process solving

Backward Execution 101

The Backward Execution Algorithm

Solved, Pending, Blocked: State variables of the AND process, representing
the status of the literals.

marks(i): The set of marks on literal i.

Procedure back-up(FL):

FL: The literal corresponding to the failed process.

1. Add FL to the marks of each literal in pred(FL).

2. Let BL be the latest literal in the linear ordering with a set of marks
containing a literal in {FL}∪ succ(FL). If there is no such set of marks,
BL is HG.

3. If BL is HG, the AND process fails, otherwise continue.

4. Call next-result(BL); if it fails, make the recursive call back-up(BL),
otherwise continue. (next-result is defined in Figure 6.10)

5. Initialize a set MV to be the set of variables generated by BL, and let
marks(BL) = ∅.

6. Work toward the end of the literal ordering, starting from BL, and do
the following to each literal L:

(a) If L consumes a variable in MV, cancel the OR process for L, set
marks(L) to ∅, and move L to the set of blocked literals. If L is a
generator, add the variables generated by L to MV.

(b) If L is a generator in candidates(BL) and does not consume a
variable in MV, set marks(L) to ∅ and call reset(L) (Figure 6.10).
If the values of the variables generated by L change as a result of
the reset, add them to MV.

7. For each literal {L|L ∈ Blocked, pred(L) ⊆ Solved} start an OR process
and move L from Blocked to Pending.

After receiving a fail message from process for L: Call back-up(L).

After receiving a redo message: Call back-up(HC).

Figure 6.9: Backward Execution Algorithm

102 Parallel AND Processes

next(D,E) fails, we attempt to obtain another result from the generator of
E, and it also fails. At this point, if we simply check for literals marked with
the ID of next(B,E), the failed generator, we would backtrack to the top
node in the graph. However, this would ignore the fact that next(D,E) had
failed earlier. We still need to obtain further results from other predecessors
of this node, since next(D,E) might succeed given new values for D. We have
to backtrack to the generator of D and reset the generator of E.

There are cases when it is correct to backtrack to the root of the graph
in the above situation. If next(B,E) fails before ever generating a value for
E, it means the value of B is not acceptable. In this case, next(D,E) would
not be started yet (since next(B,E) was not solved), so its failure could not
have marked next(A,D), and the backward execution algorithm will select
the root of the graph. By checking for the failed literal or a successor of the
failed literal in the set of marks, we correctly distinguish the cases where a
generator fails because it has no further bindings for the variables it generates
as opposed to failing because it cannot be solved with the combination of
inputs it was given.

After identifying the generator that should change the values of the vari-
ables it binds, procedure next-result of Figure 6.10 is called. A straightfor-
ward implementation of backward execution would obtain the next result
from the selected literal by sending a redo message to the corresponding OR
process. For reasons to be explained in the discussion at the end of the chap-
ter, parallel AND processes maintain a cache of results from each generator.
What the next result procedure does is check the cache to see if there are
any usable values on hand, and if not, send a redo message.

Next, the AND process must decide which generators must be reset after
selection of BL as the backtrack literal. This potentially means every gen-
erator following BL in the linear ordering. However, not all generators need
to be reset. We have to reset only those that contribute information, along
with BL, to the solution of any successors of BL – in other words, the literals
with BL in their candidate set. Since X is in the candidate set of Y if Y is
in the candidate set of X, a literal is reset if it is in the candidate set of BL
and it follows BL in the linear ordering.

The cleanup phase of a backward execution step is to scan the literals
after BL in the linear ordering, resetting requisite generators and canceling
the OR process for each literal that consumes variables modified during this
procedure. After this pass over the literals, a forward execution step is taken,
since a canceled literal may be enabled again if all its predecessors have up
to date bindings through a reset.

The backward execution algorithm is invoked by a redo message from the
parent of the AND process as well as a fail from one of its descendants. No
special treatment is required for this event. The failed literal is the head of
the clause, which means we have to back up from HC, the node representing

Backward Execution 103

Result Cache Algorithms

Old For each generator, the list of results sent from the OR process and
used to set the value of the corresponding variables.

New For each generator, the list of future bindings for its variables. Gener-
ally these are “recycled” values, not values just arrived from the OR
process and waiting to be applied.

Procedure next-result(L): Return OK if the variables generated by L can be
given new bindings, or if the process for L can potentially send new bindings.

1. If New(L) 6= ∅, add the current bindings to Old(L), and remove a set
of bindings from New(L) and make them the current bindings. Return
OK.

2. If L ∈ Pending, add the current bindings to Old(L), remove L from
Solved, and return OK.

3. If the process for L has failed, return FAIL.

4. Add the current bindings to Old(L), send the process for L a redo
message, move L from Solved to Pending, and return OK.

Procedure reset(L): Return TRUE if the variables generated by L change
values as a result of the reset.

1. If L ∈ Blocked, do nothing, return FALSE.

2. If Old(L) = ∅, do nothing, return FALSE.

3. Move all bindings to New(L), setting Old(L) to the empty list. Remove
a set of bindings from New(L) and make them the current bindings.
Add L to Solved and return TRUE.

Figure 6.10: Maintaining a Cache of Results

104 Parallel AND Processes

the head as a consumer in the dataflow graph. The immediate predecessors
of HC are marked, one of the generators is selected, and the cleanup operation
is performed.

6.4 Detailed Example

In the example execution plotted in Figure 4.1 on page 69, process 4 was
created to solve the body of the clause

paper(P,1978,uci) ←
date(P,1978) ∧ author(P,A) ∧ loc(A,uci,1978).

The steps in the interpretation of this process, from the original ordering
of literals through the generation of all solutions, will be explained in detail
in this section. This example is intended to illustrate the details of all three
components – literal ordering, forward execution, backward execution – in
a parallel AND process for a fairly simple clause. More complex situations
that may arise in a parallel AND process will be discussed in the following
section. Another detailed example of a parallel AND process is in Chapter 7,
where the solution of the map coloring problem is described.

6.4.1 Ordering

The clause used to define the initial state of process 4 is

paper(P,D,I) ←
date(P,D) ∧ author(P,A) ∧ loc(A,I,D).

There are no mode declarations, so no literals are designated as generators
or non-generators in the static analysis. All variables are placed in U.

When the process is created, variables D and I are bound to 1978 and uci,
respectively. HG is designated the generator of these variables, G is {D, I},
and U becomes {P, A}.

The connection rule is applied to try to “connect” a set of literals to the
head, by looking for literals containing variables in both G and U. The first
pass through the list of literals finds two that meet this criterion. date(P,D)
contains P, a variable with no generator yet, and D, a variable generated by
the head, so it is designated as the generator of P. Similarly, loc(A,I,D)
becomes the generator of A. U is now empty, so the ordering algorithm
terminates.

The dataflow graph and the relations defined by it are shown in Fig-
ure 6.11.

Detailed Example 105

Clause:

paper(P,D,I) ← date(P,D) ∧ author(P,A) ∧ loc(A,I,D).

Call:

← paper(X,1978,uci).

HG:paper(P,D,I)

�
�

�
�

#1:date(P,D)

�
�

�
� #3:loc(A,I,D)

�
�

�
�

HC:paper(P,D,I)

�
�

�
� #2:author(P,A)

�
�

�
�

�

Z
Z

Z
Z

ZZ~

Z
Z

Z
Z

ZZ~

?

HHHHHHHHHj ?

I = uciD = 1978

P A

Linear Ordering: [#1,#3,#2]

Candidates[1]: {HG, 3}
Candidates[2]: {1, 3}
Candidates[3]: {HG, 1}
Candidates[HC]: {1}

Figure 6.11: Graph for Detailed Example

106 Parallel AND Processes

<1> (after ‘start’ from Process 2, T = 2):

Goal: [paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

Solved: [HG]

Pending: [#1:6,#3:7]

Blocked: [#2]

Frame: [P:_,D:1978,I:uci,A:_]

Marks: [HG:[],#1:[],#3:[]]

<2> (after ‘success(date(pro,1978))’ from Process 6, T = 4):

Goal: [paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

Solved: [HG,#1:6]

Pending: [#3:7]

Blocked: [#2]

Frame: [P:pro,D:1978,I:uci,A:_]

Marks: [HG:[],#1:[],#3:[]]

<3> (after ‘success(loc(kling,uci,1978))’ from Process 7, T = 5):

Goal: [paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

Solved: [HG,#3:7,#1:6]

Pending: [#2:9]

Blocked: []

Frame: [P:pro,D:1978,I:uci,A:kling]

Marks: [HG:[],#1:[],#3:[]]

Figure 6.12: States of a Parallel AND Process

6.4.2 Forward Execution

The individual state transitions are summarized in Figure 6.12. Items in
the blocked, pending, and solved lists are terms of the form #N:P, where #N

identifies a literal, and P is the ID of the OR process currently solving literal
#N. When the process for a literal fails, the term representing the literal
becomes #N:_ until a new process replaces the old one.

The first forward execution step is shown in transition <1>. Literals #1

and #3 are both enabled – the predecessor set for each is a subset of {HG} – so
we immediately start OR processes for #1 and #3. Those literals are moved
from the blocked list to the pending list. The state of the AND process after
transition <1> shows process 6 solving literal #1, and process 7 solving #3.

Transition <2> occurs when success(date(prolog,1978)) arrives from
process 6. This is from the process for literal #1, so #1 is added to the solved
list. Since #3 is also a predecessor of #2, and #3 is not yet solved, no new
processes are created on this step.

The next transition occurs when success(loc(kling,uci,1978)) ar-

Detailed Example 107

<4> (after ‘fail’ from Process 9, T = 7):

Goal: [paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

Solved: [HG,#1:6]

Pending: [#3:7]

Blocked: [#2]

Frame: [P:pro,D:1978,I:uci,A:_]

Marks: [HG:[2],#1:[2],#3:[]]

<5> (after ‘fail’ from Process 7, T = 9):

Goal: [paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

Solved: [HG,#3:_]

Pending: [#1:6]

Blocked: [#2]

Frame: [P:_,D:1978,I:uci,A:kling]

Marks: [HG:[2,3],#1:[],#3:[]]

<6> (after ‘success(date(eft,1978))’ from Process 6, T = 11):

Goal: [paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

Solved: [HG,#1:6,#3:_]

Pending: [#2:11]

Blocked: []

Frame: [P:eft,D:1978,I:uci,A:kling]

Marks: [HG:[2,3],#1:[],#3:[]]

Figure 6.12 (cont’d)

rives from process 7, currently solving #3. #3 is added to the solved list, and
now a process (number 9) is created for #2. Note that after bindings from
the first two answers have been applied, #2 is author(prolog,kling), which
will fail, triggering backward execution.

6.4.3 Backward Execution

Backward execution often requires cancel messages to be sent to descendant
OR processes. After a parent sends a cancel message, it can ignore any subse-
quent messages received from the descendant. This situation may arise when
a descendant sends a message, but the message has not yet been processed
by the time the parent decides to send the cancel message. In the discussion
below, replacing a process P means sending P a cancel message, creating a
new process P′ for the same literal (but using new bindings), and using the
process ID of P′ in place of P.

In the linear ordering of this clause, the generator of A comes after the
generator of P, so A corresponds to the “innermost” variable. Each time #2

108 Parallel AND Processes

fails, we will first try to obtain another value from #3, the generator of A.
When that fails, we ask for a new value of P and reset A.

Transition <4> is the first backward execution step. When the AND
process receives the fail message from the process for #2, it adds #2 to the
marks on all predecessors of #2. The generator latest in the linear ordering
marked with #2 is #3, so #3 is the literal selected to generate new bindings.
The next-result procedure is called, and since the cache of unused bindings
for #3 is empty, a redo message is sent to the process for #3. #3 is moved
from solved to pending since we are waiting to see if it can provide another
value for A. The marks are removed from #3 but left on #1.

Transition <5> is triggered by a fail from the process for #3, meaning
there is no additional binding for A that satisfies loc(A,uci,1978). HG, the
immediate predecessor of #3, is marked. We search through the generators,
starting from the end of the linear ordering, looking for #3 or #2 in a set
of marks. #1 qualifies since it is marked with 2. #1 is moved from solved
to pending, and the process for #1 is sent a redo message. The marks are
removed from #1. The literals following #1 in the literal ordering are #3 and
#2; since #3 is in candidates(1) it is reset, and #2 is canceled (this has no
effect since #2 was blocked). Since #3 was solved once, we can use the first
value it sent as the current value of A, and we can move #3 to the solved list.
Notice the term representing #3 in the solved list: since the process for the
literal failed, we cannot send it another redo message.

Transition <6> takes place when a success message arrives from the pro-
cess for #1 with the second binding for P. #1 is added to the list of solved
literals, and a new process can be created for author(eft,kling), the cur-
rent instantiation of #2. The states of the literals are now: #1 and #3 solved,
#2 pending.

When the process for #2 sends success (transition <7>), all literals have
been solved. A success message containing a copy of the goal statement
with the bindings {P/eft, D/1978, I/uci, A/kling} is sent to the parent OR
process.

6.4.4 Additional Solutions

The next message processed by the AND process is a redo message from its
parent. The “failed literal” in this case is HC, the head in its role as consumer.
Only literal #1 is marked, since the head of the clause is not concerned with
further values of #A, as indicated by the relationships in the dataflow graph.
#1 is selected as the backtrack literal, and its marks removed. It is moved
from solved to pending. #3 is reset, and again we consider it solved. #2

is canceled: the process for #2 is sent a cancel message (since any further
processing of literal #2 will be based on new values, if any, from #1 and #3),
and #2 is moved to the blocked list. The new state is: #1 pending, #3 solved,

Detailed Example 109

<7> (after ‘success(author(eft,kling))’ from Process 11, T = 13):

Goal: [paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

Solved: [HG,#2:11,#1:6,#3:_]

Pending: []

Blocked: []

Frame: [P:eft,D:1978,I:uci,A:kling]

Marks: [HG:[2,3],#1:[],#3:[]]

<8> (after ‘redo’ from Process 2, T = 15):

Goal: [paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

Solved: [HG,#3:_]

Pending: [#1:6]

Blocked: [#2]

Frame: [P:_,D:1978,I:uci,A:kling]

Marks: [HG:[2,3,HC],#1:[],#3:[]]

<9> (after ‘success(date(df,1978))’ from Process 6, T = 17):

Goal: [paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

Solved: [HG,#1:6,#3:_]

Pending: [#2:13]

Blocked: []

Frame: [P:df,D:1978,I:uci,A:kling]

Marks: [HG:[2,3,HC],#1:[],#3:[]]

Figure 6.12 (cont’d)

#2 blocked. Note that we do not care if #2 can be solved more than once
with the previous bindings; this will be discussed further in Section 6.5.5.

Transitions <9> through <12> show how the AND process tries unsuccess-
fully to get another value for P. In transition <9> a success message arrives
from the process for #1 with new value for P, and the new value is used to
start a new process for #2. In transition <10> a fail message arrives from this
process, and #3 is chosen as the backtrack literal. As in transition <4>, the
AND process checks for unused answers from the process for #3, and finds
none. This time, however, there is no longer a process for #3 (it sent a fail
message back in transition <5>), so we cannot send it a redo. Since there are
no unused results from the process for #3, and no way of obtaining further
answers, we treat this as a failure of #3. The immediate predecessors of #3
are marked, and we look for a generator marked with either #3 or #2. This
results in the selection of #1 as the backtrack literal. The new state of the
AND process thus has #1 pending, #2 blocked, and #3 solved (due to the

110 Parallel AND Processes

<10> (after ‘fail’ from Process 13, T = 19):

Goal: [paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

Solved: [HG,#3:_]

Pending: [#1:6]

Blocked: [#2]

Frame: [P:_,D:1978,I:uci,A:kling]

Marks: [HG:[2,3,HC],#1:[2],#3:[]]

<11> (after ‘success(date(fp,1978))’ from Process 6, T = 21):

Goal: [paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

Solved: [HG,#1:6,#3:_]

Pending: [#2:15]

Blocked: []

Frame: [P:fp,D:1978,I:uci,A:kling]

Marks: [HG:[2,3,HC],#1:[],#3:[]]

<12> (after ‘fail’ from Process 15, T = 23):

Goal: [paper(P,1978,uci),[date(P,1978),author(P,A),loc(A,uci)]]

Solved: [HG,#3:_]

Pending: [#1:6]

Blocked: [#2]

Frame: [P:_,D:1978,I:uci,A:kling]

Marks: [HG:[2,3,HC],#1:[],#3:[]]

<13> (after ’fail’ from Process 6, T = 25):

<done>

Figure 6.12 (cont’d)

reset of #3).
In transition <11> we get a new value for P and start a new process for

#2. This process will also fail, so transitions <11> and <12> are essentially
the same as <9> and <10>. After transition <12> we are waiting for a fifth
value of P from the process for #1.

Finally, in transition <13>, a fail message arrives from the process for #1,
indicating there are no more ways to solve date(P,1978). The head of the
clause is the only predecessor of #1; #1 is added to the set of marks on HG.
HG is the only possible backtrack literal – it is the only literal with a mark of
#1 or #2 – so the AND process fails.

Discussion 111

6.5 Discussion

The backward execution algorithm described in this chapter is the result
of a series of improvements in the technique for generating multiple results
by an AND process. Each improvement leads to fewer tuples generated for
consideration by consumer processes or fewer steps taken to generate the
tuples.

A sequential AND process uses sequential backtracking, with all the faults
of Prolog and other sequential systems. The basic parallel model uses a graph
directed backtracking algorithm, where the backtrack literal is determined by
the set of marks on generators. This leads to a form of intelligent backtracking
since the backtrack literal is directly or indirectly responsible for the failure of
the failed literal. If a literal fails because the bindings for its input variables
are invalid, the backtrack literal is a predecessor of the failed literal. If
a literal fails after generating all possible values for the variables it binds,
the graph is used to select a different generator. In the basic model, as in
a nested loop model, every generator following the backtrack literal in the
linear ordering is reset, and every literal that consumes variables modified by
a reset is canceled.

The algorithm presented in this chapter improves on the basic model
through the use of candidate sets and a result cache to save steps. Using the
candidate sets to determine which generators need to be reset leads to fewer
reset literals and in turn to fewer descendant OR processes. Using a cache
not only saves the results generated by descendants, it also leads to fewer
resets. These improvements and other aspects of parallel AND processes are
discussed in the following sections.

6.5.1 Relative Order of Incoming Messages

The order of arrival of success and fail messages can have an effect on future
state transitions. In general, if a fail message and a success message are
both waiting to be processed, fewer steps will be executed if the fail message
is handled first. This is because a transition based on a fail message often
cancels descendant processes, and one of the canceled processes might be
the one that sent the success. If the fail is processed first, and the process
sending the success is canceled, the AND process can ignore the success
message. However, if the success message is handled first, a complete step
is executed before the transition specified by the fail is taken. The rules for
state transitions are such that the relative order of arrival does not matter;
either way, the system will eventually be in the same state after processing
both messages. However, the computation will generally be more efficient if
fail messages are processed first when the process has a choice.

112 Parallel AND Processes

m m
m m

m m

m m

m mm

a a

b b

d d

c c

e ef

�
�	

�
�	

@
@R

@
@R

? ?? ?

J
J
Ĵ

�

Candidates(c) = {a} Candidates(c) = {a, b}

(a) (b)

Figure 6.13: Candidate Sets

6.5.2 Definition of Candidate Set

Figures 6.13a and 6.13b illustrate the reasoning behind the definition of the
set of candidate literals for backward execution. A literal is a candidate for
i if it is an immediate predecessor of i or a predecessor of a successor of i:

candidates(i) = ipred(i) ∪ cp(i)− {i}

where

cp(i) =
⋃

x∈succ(i)

pred(x)

A non-generator literal has an empty set of successors, so the candidate set
for one of these literals is the set of its immediate predecessors.

One use of this set is in identifying the literal to back up to after i fails.
In Figure 6.13a, if c fails it is clear we want to back up to the root of the tree.
However, in Figure 6.13b, when c fails we might have to back up to literal b,
because f may have failed earlier, and by backing up to b and resetting c we
are moving to the next combination of values for f to consume.

We do not always want to back up to b after c fails, however. If c fails
without producing any results, we should back up to the root, because this
means c consumes an unsatisfactory value. The algorithm presented here

Discussion 113

correctly distinguishes these two cases by using the set of marks on the lit-
erals. When c fails, we check the marks on the candidates of c. If c had
never succeeded, there could be no marks from f on b, so a is selected for
backtracking.

The other use of the candidate set is in determining the generators to
reset after a backtrack step. Referring again to Figure 6.13a, it would make
no sense to reset c when b is selected for backtracking after d fails. In Fig-
ure 6.13b, however, c is reset in this situation. The reason is that when b and
c have a descendant in common, the descendant needs to see all combinations
of values from b and c, and this is achieved by resetting c whenever b gets a
new value.

Another feature of using the candidate set for selecting a backtrack literal
is the processing of multiple independent failures. In Figure 6.13a, suppose
d and e both fail when given initial values by their respective generators.
Redo messages will be sent to the OR processes for b and c. In this example,
the AND process directs backtracking independently in separate parts of the
graph. If either branch ever fails back to the common ancestor node, the
other is terminated, since the root will be generating a new value for both
its consumers.

The net effect of these rules for backward execution is a better choice of
backtracking points. The techniques outlined here are useful in a sequential
system, as well. A graph for the body of a clause can be created at com-
pile time, and the graph used later to direct backtracking in the sequential
system [10]. The set of backtracking points is not as efficient as the set gen-
erated during intelligent backtracking [6, 73]. When a literal p(X,Y) fails,
we back up to the generator for X or Y, whichever occurs later in the linear
ordering, without knowing which binding actually caused the failure. Chang
et al coined the term semi-intelligent to describe this form of backtracking.

6.5.3 Result Cache

In the current implementation, AND processes maintain a cache of results
from each generator. The cache could be kept by the OR processes, in the
form of the “sent list” described in the previous chapter, since information
about the number of results generated is useful status information for the
OR process as well.

The existence of the cache complicates the message protocol between
AND and OR processes. A situation may arise where a pending literal is
reset by the AND process. If there are previous bindings for the variables
generated by this literal, the bindings will be used and the literal added to
the set of solved literals. The literal is now in two sets, Pending and Solved;
it must remain in the pending set because we should handle the response
when it eventually arrives. The way to handle this is to have the message

114 Parallel AND Processes

← p ∧ r ∧ q.

m
← r. ← r. ← r.

��������

@
@

@
@

�� @@

×

PPPPPq

�
�

��	

⇓

p and q are generators which can be solved in parallel. The backward ex-
ecution algorithm arranges the combination of values to make instances of
r. The values generated by q are computed once and stored in the cache, as
opposed to being recomputed each time p generates a new value.

Figure 6.14: The Effect of Goal Caching on Recomputation

interface of the AND process intercept messages from processes for literals
currently in Solved. If the message is a success, the bindings in the message
are simply added to the New list of the cache for the literal. If the message
is fail, the literal is marked as failed, and the next-result procedure will later
take this into account.

The primary purpose of the cache is to save bindings created by indepen-
dent OR processes in order to avoid recomputing the same values over and
over. The goal tree of Figure 3.9, which illustrated the effects of combining
AND and OR parallelism, is redrawn here in Figure 6.14.

Assume the goal at the root of the tree is based on the clause

f(X,Y) ← p(X) ∧ q(Y) ∧ r(X,Y).

where p is the generator of X and q is the generator of Y. p and q are
independent and can be solved simultaneously. If there are np solutions to
p and nq solutions to q, the backward execution mechanism of the AND
process will create the product of bindings of X and Y and start (one at a
time) np × nq different OR processes for r. If the results from q are saved
in a cache, q can be solved once and the nq results stored in the cache. In
Prolog and pure OR parallel systems, q(Y) has to be computed np different
times, once for each solution of p. An example of this was seen in the detailed
example, where the literal loc(A,I,D) was solved once and the same binding
for A used four times.

Discussion 115

The parallel AND process still gives rise to duplicate computations, how-
ever. Consider a partial goal statement

← . . . f(X) ∧ g(Y) ∧ p(X,Y) . . .

Suppose p(X,Y) succeeds using one particular combination of X and Y values,
but fails for others. If f and g are reset, the AND process will cancel p
and start a new process with the reset values of X and Y, not taking into
account whether this combination of X and Y was previously successful or
not. A future optimization might be able to use the cache to avoid this
source of recomputation. In the basic model, generators are not required to
bind variables in the same order after a reset. When a generator makes a
series of bindings t1 . . . ti up to the time it is reset, it is not required to use
t1, or any other value in the sequence, as the first binding after the reset. It
makes sense to reset f and g to the first acceptable combination of values
in the cache, rather than an arbitrary combination that may not satisfy p.
The information about the acceptable combination is lost in the reset in the
general model. However, through the use of a result cache we might be able
to order the bindings, defining the notion of “first acceptable combination”
and remembering which combinations were valid. Incorporating the ordering
into the communication protocol and backward execution algorithm, and
measuring its effectiveness are topics for future research.

6.5.4 Infinite Domains

A requirement for backtracking is to be able to generate as many tuples of
values as possible. When the domains of the variables are finite, sequential
backtracking and nested loop models satisfy the requirement, but when one
or more domains are infinite, these models are not able to generate all tuples.
For example, consider two predicates, gi and gf. The denotation of gi is the
infinite sequence {i1, i2, . . . }, and the denotation of gf is the finite sequence
{f1, f2, . . . fm}. In the goal list

← gf(F) ∧ gi(I) ∧ pf(F) ∧ pi(I).

gf is the generator of F, gi the generator of I, and I is the innermost variable.
Suppose pf succeeds only for the second value of F, but pi succeeds for any
value of I. Since no tuple with f1 can succeed (i.e. pf(f1) fails), Prolog and
the equivalent nested loop program in a procedural language will never solve
this goal. After pf fails, the interpreter backtracks to gi, and it generates
another of the infinite number of values for I. All tuples created will be of
the form <f1, ij>, with the interpreter stuck in an infinite loop generating
the ij . Parallel AND processes have a chance of succeeding in this example,
since when pf(F) fails a redo message is sent to the generator for F, while
the generator for I is reset. Thus there are cases, even when infinite domains

116 Parallel AND Processes

are involved, where parallel AND processes construct all successful tuples.
Parallel AND processes are still not perfect, however. If the consumer is
p(F,I), the linear ordering may specify that the generator for I is to be sent
a redo message before the generator of F, and thus the parallel AND process
is also caught in an infinite loop.

The intelligent backtracking interpreter of Pereira and Porto can also
avoid infinite loops, since the generators of infinite domains may be skipped
on backtracking. Their interpreter may even succeed when parallel AND
processes fail, because their interpreter analyzes the cause of a failure. If
p(f1, i1) fails because the unification of p(f1, i1) does not succeed when
F is bound to f1, their interpreter knows to backtrack into the solution of
the generator of F. At present, all a parallel AND process knows is that
p(f1, i1) failed, this literal has two predecessors, and that one of them must
be redone; which one is determined solely by the linear ordering. Incorpora-
tion of information about the cause of a failure in a fail message, and use of
such information, is a subject of future research.

6.5.5 Multisets of Results

Up to this point we have been referring to D1(p), the denotation of a pro-
cedure p, as as a set of answers. The set of results actually constructed by
interpreters should be referred to as a multiset, or bag, since some of the
tuples can occur more than once. It is interesting to compare the AND/OR
Process Model and Prolog with respect to the creation of duplicate tuples.
In Prolog, duplicates may occur as a side effect of the control strategy, in
situations where the logic of the program does not specify multiple occur-
rences of the same tuple. If a multiset is constructed in the AND/OR Process
Model, however, it is based only on the logical structure of the program. The
following program and goal statement illustrate the difference:

← p(A).

p(A) ← q(A) ∧ r(B).

q(0).

r(1).

r(2).

If the goal is proved with a depth-first control strategy, as in Prolog, the
binding A/0 is generated twice. The first answer is found by unifying q(A)

with the unit clause q(0), and then unifying r(B) with r(1). If told to
backtrack to create a second answer, Prolog will re-solve r(B), this time by
binding B to 2, and it once again reports success for p(0).

If the clause for p is solved with an AND process using the backward
execution algorithm presented in this chapter, p(0) is proved only once.
When a redo is sent to the AND process, q(A) is chosen as the backtrack

Discussion 117

literal, since the unbound variable in the head is A and q(A) is the generator
of A. q(A) fails to give a second binding to A, so the AND process fails after
providing just one result.

Next consider a very similar program, where one of the assertions for r

has been replaced by a duplicate assertion for q:

← p(A).

p(A) ← q(A) ∧ r(B).

q(0).

q(0).

r(2).

Now both interpreters report two solutions, each with A bound to 0. The
difference between the two programs is that in the second, the structure of
the program directs an interpreter to produce a multiset, but in the first
the creation of the multiset is a side effect of the control strategy. In the
first program, Prolog is producing a multiset of A values by binding B to
different terms, not by binding A to different instances of the same term.
In the AND/OR Process Model, the number of bindings for a variable is
determined by the number of ways the value can be derived. It does not
depend on the context of the proof; when a goal is solved in the context of
another, independent goal, the number of solutions of the additional goal
does not influence the number of solutions reported for the first.

Multisets are useful in database applications. For example, suppose Sally
had a score of 95 on a test. This could be represented in a database as
score(sally,midterm,95). If we want a list of all midterm scores, in order
to compute the mean, we can use the following query, using an “all solutions”
predicate similar to Prolog’s bagof:

← bag(N,S^score(S,midterm,N),B) ∧ mean(B,M).

This goal will succeed by binding L to the list of all values of N that satisfy the
specified goal.1 When more than one student scores 95, we certainly want
the list to contain the number 95 once for each student, or the calculation of
the mean will be incorrect.

1bag is a special OR process, similar to Prolog’s bagof, collecting all answers from
its descendants and putting them in a list for its parent. The caret operator tells the
interpreter to disregard bindings for S.

118 Parallel AND Processes

6.6 Chapter Summary

Parallel solution of the body of a clause is based on a dataflow graph for the
literals in the body. A literal ordering algorithm automatically generates the
graph, without requiring annotations specifying the relative order of solu-
tions. If a literal fails when mode constraints are violated, and the modes are
unavailable, the algorithm may generate an illegal graph, but otherwise the
graph describes a valid parallel solution. Heuristics can be used to influence
the algorithm, leading to more or less parallelism.

When literals all succeed, which is often the case when the clause imple-
ments a deterministic function, the solution of the body is straightforward.
AND parallelism in the bodies of these clauses corresponds to the parallelism
found in an equivalent program written in a functional language.

In nondeterministic functions and relations, it is not always the case that
literals can be solved on the first attempt. When a literal fails, an interpreter
must re-solve a previously solved literal, in order to create new bindings for
the input variables of the failed literal. The backward execution mechanism
in parallel AND processes determines which literals must be re-solved in
response to failures. Although the backward execution algorithm is compli-
cated, the processing steps are relatively simple and do not involve complex
control decisions. The next chapter has an overview of an implementation
technique for backward execution where steps are based on simple bitset op-
erations, and other implementation techniques that will lead to an efficient
AND/OR process interpreter on a multiprocessor.

Chapter 7

Implementation

The overall goal of this research is the design of a multiprocessor computer
architecture for parallel execution of logic programs. The research takes
the language first approach, summarized in the introduction, in which the
designer starts with an abstract model of computation, defines a method for
interpreting programs of the model in parallel, and finally starts the design
of a computer based on the parallel execution model. Previous chapters
described the research in the early steps of this top down process, research
that culminated in the definition of a method for interpreting logic programs
that automatically divides the program into independent pieces for parallel
solution. The implementation techniques presented in this chapter represent
the beginnings of the design of the lower levels.

The techniques are a summary of ideas from four different implementa-
tions. Two of the systems – the Prolog version [19] and one written in C – are
complete interpreters. The other two are partial implementations, intended
to test different algorithms in isolation. An interpreter written in Modula-2
was used to test the bitset representation and corresponding algorithms for
backward execution described later in the chapter.

At this next lower level, a logic program appears to the system as a
collection of independent processes communicating via messages. When a
process receives a message, it will be transformed into another state, and
possibly generate messages for other processes. Each state transformation is
an atomic operation; if a message arrives at a process while a transformation
is in progress, it is queued with other incoming messages until the process is
ready to accept it. The abstract model has been designed so that the order
of acceptance of incoming messages does not matter. We will use operating
system terminology when describing the execution of a process. A process is
running when it is being transformed from one state to another, it is blocked
when it is waiting for a message, and it is ready when it has an incoming

119

120 Implementation

message but no processor in the system is (yet) transforming it into its next
state.

The machine at this level is a network of homogeneous processing ele-
ments, or PEs. We will assume each PE has a large local memory for storing
the static program code and a subset of the processes and messages. We
will continue to specify algorithms and representations without relying on a
common memory or global address space. Common memory may eventually
be the best way to implement the binding environments or process allocation
strategies discussed in this chapter; at this point, however, we will continue
the policy outlined in the first chapter and design for systems without com-
mon memory. For examples of some of the implementation techniques possi-
ble in a shared-memory multiprocessor, see the papers by Borgwardt [3, 4].

7.1 Overview of the Interpreter

An AND process is created to solve a goal statement, either the user’s top-
level goal or the body of a clause. The process maintains a single binding
environment, known as the current environment, to represent the values as-
signed to each variable of the goal statement. The current environment was
called the “frame” in the states shown in Figure 6.12.

OR processes solve one of the goals from their parent’s goal statement.
When an OR process is started, it uses a unique copy of the parent’s current
environment in each unification with a candidate clause. Thus each unifi-
cation is free to bind variables in the parent environment without worrying
about conflicting bindings. When the OR process sends a success message
back to its parent, the argument is one of these copies; the AND process then
uses the copy to update the current environment with the values created by
the descendant OR process. If the AND process is a sequential process, the
environment sent by the OR process becomes the new current environment;
no merging of values is necessary.

Each unification with a candidate clause involves two environments: the
copy of the parent environment described in the previous paragraph, and a
new frame. The new frame contains one empty slot for each variable of the
candidate clause. If the unification is successful, and the clause has a body,
the new frame becomes the initial frame of an AND process for the body.

Even when an OR process has its own copy of its parent’s frame, situations
arise where the unification that starts a descendant would bind a shared
variable in an ancestor frame. One of the techniques discussed in Chapter 3
for handling this situation must be used to give each OR process its own copy
of shared variables. The method currently being used resembles Lindstrom’s
variable importation scheme [58], except it has been designed to work in a
distributed memory environment [20].

Parallel AND Processes 121

7.2 Parallel AND Processes

The state of a parallel AND process consists of static information such as
the ID of the parent OR process and dynamic information such as the status
of each literal in the goal statement. Techniques for efficiently representing
the dynamic information will be presented in this section. The techniques
were developed as part of an interpreter written in Modula-2, intended to
show that most of the dynamic information used for backward execution
could be represented in bitsets. A bitset is a set of atomic items, such as
integers. If the universe of all possible elements is small, the set can be
represented in a single memory word, and elementary operations such as
union and intersection performed with one machine level instruction.

As in other recent implementations of AND processes based on ordering
literals according to a dataflow graph, we will assume the graph is static. In
the abstract model, the graph is dynamic, since new generators are desig-
nated when a generator returns an unbound variable or a term containing an
unbound variable. We will assume the graph is constructed at compile time
and does not change during execution [25].

Instead of storing a list called the linear ordering as part of the process,
the literals can be labeled with an index according to their position in the
ordering. HG, the node corresponding to the head as generator, has index 0,
and HC is given an index higher than any body literal. For example, the main
example in the last chapter was an AND process created to solve the body
of the clause

paper(P,D,I) ← date(P,D) ∧ author(P,A) ∧ loc(A,I,D).

In the abstract model, the literals were numbered according to their occur-
rence in the body, e.g. #3 was loc(A,I,D). The linear ordering of the clause,
determined by breadth-first traversal of the dataflow graph, was [#1,#3,#2].
In the compiled representation, author(P,A) has an index of 3, since it ap-
pears third in the linear ordering. This technique for labeling literals will
simplify many of the steps of backward execution. After a backtrack literal
is selected, an AND process must find all literals that follow the backtrack
literal in the linear order. Using indices, this means any literal with an in-
dex higher than the index of the backtrack literal, so the cleanup phase of
a backward execution step now involves a linear scan of an array of literal
information starting from the index of the backtrack literal.

The dynamic state variables of the AND process consist entirely of bitsets
or arrays of bitsets accessed by literal indices. The sets of solved, pending,
and blocked literals are, naturally, bitsets. The dataflow graph is stored as
an adjacency matrix, with the relevent information about each literal stored
as a bitset. pred[i] is the set of predecessors of the literal with index i.
Candidates and marks are also bitsets.

122 Implementation

Bitset Operations:

Sets are represented by fixed-length words. The most significant bit in a set
is numbered 0. If bit n is a 1, item n is a member of the set, otherwise it is
not a member. The operation last-element(S,i) returns the highest index j of
an element in S with index less than i:

(S(j) = 1) ∧ (j < i) ∧ (¬∃k : (k > j) ∧ (k < i) ∧ (S(k) = 1))

If bit i is the lowest index of any element in S, last-element(S,i) returns -1.

Procedure select(FL):

FL: The index of the literal which failed.

succ(i): The set of successors of literal i in the dataflow graph.

1. Construct a set MS = {FL} ∪ succ(FL).

2. Let L be last-element(candidates(FL),FL).

3. While L ≥ 0 :

(a) If marks(L) ∩MS 6= ∅ then return L.

(b) Set L to last-element(candidates(FL),L).

4. Return 0 (this return is taken when the head does not generate any
values, and thus is never marked; return 0 when the root of such a
graph fails).

end procedure

This algorithm is used in the Modula-2 implementation of the AND/OR
Process Model. It is called to select a literal for backtracking as part of
backward execution.

Figure 7.1: Set Operations in Backward Execution

Parallel AND Processes 123

Some operations on bitsets, such as intersection and union, can be per-
formed efficiently with most processor instruction sets, requiring just a single
instruction. Some processors, such as those in the National Semiconductor
32000 series, have instructions such as “find first set bit” that will make
other operations on bitsets very efficient. The use of bitsets in a backward
execution step is shown in Figure 7.1. The last-element function could be
implemented efficiently as a search from low order to high order bits for the
first set bit (1 value) before a given index.

As an example of the use of indices for representing processes, and as a
final example of a parallel AND process for a nondeterministic goal statement,
the remainder of this section contains a detailed description of the solution of
the map coloring problem first mentioned in Section 6.1.3. The description
is based on traces of the solution produced by the Modula-2 implementation
of parallel AND processes.

The dataflow graph for the clause is reproduced here as Figure 7.2. The
index of a literal is shown next to the literal in the program, and the nodes in
the graph are labeled with these indices. In the ensuing discussion, the no-
tation #N will mean the literal with index N. Also, we introduce the notation
@N to stand for the OR process created to solve #N.

The dataflow graph is created, at compile time, by applying the leftmost
rule to assign #1 as the generator of A and B, and then the connection rule
designates the other three generators. In the first forward execution step,
the only enabled literal is #1. This process succeeds, returning the message
success(next(green,yellow)), binding A to green and B to yellow. This
enables processes for the three generators in the middle row of the graph.

All three of the new processes will succeed, creating the following bind-
ings: {C/yellow, D/yellow, E/green}. Of the consumers on the bottom row
of the graph, only #7 and #8 can be solved with these values; #5 and #6 will
fail. The AND process takes a different sequence of steps depending on which
of the fail messages arrives first. The two traces to be described explain what
happened in each case. Eventually the AND process reaches the same state,
no matter which fail arrives first. Intuitively, one would expect the process to
succeed in fewer steps if the fail from @6 arrives first, since the generator of C
is earliest in the linear ordering. Obtaining a value from a generator toward
the front of the linear ordering corresponds to updating an outer variable in
a nested loop, effectively skipping useless tuples created by updating inner
variables. When the AND process reads the fail message from @6 before
the fail from @5, one less step is required in the AND process itself, and
additional savings are realized by not sending messages to descendants in the
step that was skipped.
Case 1: #6 fails first. In this trace, processes @1, @4, and @2 sent success
messages, in that order, and then the fail from @6 arrived. The state of
the AND process at this point was: #1, #2, and #4 solved; #3, #6, and #7

124 Implementation

pending; #5 and #8 blocked. #6 was added to the marks on #1 and #2, and
#2 was selected as the backtrack literal. A redo message was sent to @2, and
the literals with indices greater than 2 were processed as follows:

#3: Reset; since there were no values in the cache for #3, and #3 was pending,
the reset had no effect, and D was not added to the list of modified
variables.

#4: Reset; also not affected because its cache is empty.

#5: Canceled, because it consumes the variable generated by the backtrack
literal; note that because of this step, the message from @5 was ignored
when it arrived.

#6: Canceled (it was the failed literal, so this has no effect).

#7: Canceled; it also consumes C.

#8: Not affected.

The new state had #1 and #4 solved, #2 and #3 pending, and #5 through #8

blocked.
Next a success from #3 arrived, binding D to yellow, and a process for

#8 was started. A success from #2 arrived, carrying the second binding for
C. Processes for the remaining three consumers were started. At this point,
the frame contained the first correct tuple of values; all pending consumers
returned success messages, and the AND process was able to send a success
to its parent. In all, ten steps were required: one to handle the fail from @6,
and nine to handle the success messages (one from each literal, plus the extra
for the second binding from @2).
Case 2: #5 fails first. In this execution trace, all four generators succeeded
before the fail from @5 was read. The state of the AND process at this point
was: #1 through #4 solved, #5 through #8 pending, and none blocked. When
the fail message arrived, #5 was added to the set of marks on #1, #2, and
#3; #3 was selected as the backtrack literal, and @3 was sent a redo message.
The processing of the literals following #3 was:

#4: Reset; cache was empty, so the reset had no effect.

#5: Canceled (it was the failed literal).

#6: Not affected.

#7: Not affected.

#8: Canceled; to be replaced when new value of D sent by @3.

Parallel AND Processes 125

A

B

C

D

E

Call:
← color(A,B,C,D,E).

Clause:
color(A,B,C,D,E) ←

(1) next(A,B) ∧
(5) next(C,D) ∧
(2) next(A,C) ∧
(3) next(A,D) ∧
(6) next(B,C) ∧
(4) next(B,E) ∧
(7) next(C,E) ∧
(8) next(D,E).

#1��
��

#2��
��

#3��
��

#4��
��

#5��
��

#6��
��

#7��
��

#8��
��

�

B
B
B
BN

�
�

�
�

��
�
�
�
�
���

@
@

@
@@R

�
�

�
��/

B
B
B
BN

Z
Z

Z
Z

ZZ~

����������

Z
Z

Z
Z

ZZ~

�

B
B
B
BN

A B

C D E

next(green,yellow).

next(green,red).

next(green,blue).

next(yellow,green).

next(yellow,red).

next(yellow,blue).

next(red,green).

next(red,yellow).

next(red,blue).

next(blue,green).

next(blue,yellow).

next(blue,red).
Candidate Sets:

1: {2,3,4} 2: {1,3,4}
3: {1,2,4} 4: {1,2,3}
5: {1,2,3} 6: {1,2}
7: {1,2,4} 8: {1,3,4}

Figure 7.2: Map Coloring Program

126 Implementation

The new state showed #1, #2, and #4 solved; #3, #6, and #7 pending; #5 and
#8 blocked.

The next message was the fail from @6. #6 was added to the marks on
#1 and #2, a redo message was sent to @2, and the literals after #2 were:

#3: Reset; this time the reset has an effect, since the first binding for D is in
the cache. This binding is reinstated as the current value of D, and #3

is added to the set of solved literals.

#4: Reset; no old values in the cache, so the value of E is not changed.

#5: Canceled; since it was blocked, there is no need to send a cancel message.

#6: Canceled (it was the failed literal).

#7: Canceled; it consumes the variable generated by the failed literal.

#8: Canceled, since it consumes D, and D was modified by the reset of #3.

This trace shows an instance of the interaction of the cache and the message
protocol. #3 was added to the solved set in this step, and @3 is working on
the next solution of #3 so it is also still in the pending set. The state variables
showed #1, #3, and #4 solved, #2, #3, and #8 pending (a new process was
started for #8 after the old one was canceled), and #5, #6, and #7 blocked.

The next message was a success from #3 with the second binding for D.
Since #3 was in the solved set, the new binding was added to the New list
in the cache for #3 and no further steps were taken. Next, @2 sent the new
binding for C, and processes were started for the three blocked literals. From
this point on the remaining steps were the same, with all four pending literals
about to send success messages. This trace showed one more step than the
first trace, as a result of the processing of the extra fail message (this does
not count a step for storing the extra, unused, success message from @3).

7.3 Process Allocation

Ideally, as soon as a process goes into the ready state, some PE will perform
the prescribed state transition. This is unlikely if the PE storing the process
has any other ready processes. When some PEs have a set of ready processes
while others have only blocked processes, the system will not be executing as
efficiently as possible. The process allocation policy is the mechanism that
decides where in the network of PEs each process will be executed.

Process allocation schemes can be either static or dynamic. A static allo-
cator maps processes onto processors at compile time. A dynamic allocator
uses runtime information about the relative load on each machine to dynam-
ically schedule a task for execution somewhere in the network. Desirable

Process Allocation 127

attributes of the allocation scheme are decentralization, locality, and even-
ness. Decentralization means there should not be a central PE or authority
that decides where a process will execute. A centralized mechanism is a bot-
tleneck when there are a very larger number of processes, and is a vulnerable
point in terms of system reliability. Locality means processes that communi-
cate directly should be close to each other physically, so messages from one
to the other will not have to travel very far in the network, no matter what
the topology is. Finally, when goals are distributed evenly, every PE will
have the same amount of work to do at all times.

A dynamic process distribution method proposed by Burton and Sleep
for the ZAPP system [8] shows potential for use with the AND/OR Process
Model. A similar idea was used in the Rediflow system by Keller, Lin, and
Tanaka [52]. In this method there is no notion of assigning a newly formed
process to a PE; rather a PE must take the initiative to find work for itself.
When a PE is idle, it sends requests to its neighbors, asking for work. When
a PE sees a request for work, and has a pool of ready tasks, it can send part
of the pool to the idle neighbor. In this fashion ready processes “migrate” to
an idle PE for execution. Each PE must be able to work on its own to solve
any subproblem, in the event no neighbor requests work.

This distribution model is, obviously, decentralized. Locality can be en-
forced by limiting the number and distance of moves made by a process. An
even distribution of work depends on strategies for deciding which parts of
a problem to keep and which parts to let go. As an example of how pro-
cesses in the AND/OR Process Model could be evenly distributed, consider
an AND process for solving a typical problem involving tail recursion, where
X is bound and Y is unbound in a call to p:

p([X1|Xn],[Y1|Yn]) ← q(X1,Y1) ∧ p(Xn,Yn).

In a parallel AND process, both goals on the right hand side are solved in
parallel, and thus two OR processes are created and sent start messages at
the same time. The PE solving the AND process could keep the OR process
that solves q(X1,Y1), and let the OR process for p(Xn,Yn) migrate to a
neighbor. Xn is a list of terms; usually each term in this list has the same
general structure as X1. Using this policy of sending the “tail” part of the
tail recursion, the problem could unfold along a “line” of PEs, each solving
one of the goals q(Xi,Yi), and the work would be apportioned evenly. Since
the only message passing in the system is between parent/descendant pairs,
the locality of message transfers is not affected by this policy.

There is a tradeoff here, since in these problems the term Xn is a list of
terms, each of the form X1. Depending on the representation of terms, the list
in p(Xn,Yn) is likely to be larger than the terms in q(X1,Y1). The tradeoff
is that in order to spread the work evenly, the larger goals must be passed
from one PE to the next.

128 Implementation

Another potential difficulty is related to the topology of the underlying
network. The above scenario of unfolding a “line” of work is very likely when
the topology is a ring, where PEi has only two neighbors, PEi−1 and PEi+1.
However, in a more richly connected network it is not clear what path from
PEi to PEj would correspond to a “line.” Defining a set of policies to help
each PE decide which processes to send to its neighbors, and analyzing the
tradeoffs involved in the context of various topologies, is the subject of future
work and simulations.

When large problems are being solved, the system will reach a point
where each PE will be actively working on a problem. Since each PE is busy,
no requests for work will be transmitted, and no more subproblems will be
passed around the network. Thus one immediate advantage of this method is
that message traffic is not strictly a function of problem size. When a large
problem is solved, there will be a large amount of traffic as subproblems
are initially spread around, but eventually a point will be reached where
each PE is busy working on its own part of the overall problem. Other
techniques for dynamic allocation are based on a mechanism for assigning
tasks to processors that will perform the task. An example is the hashing
function that maps activity names into processor IDs in the Irvine Dataflow
system [37]. If an assignment function is used, new tasks are mapped onto
processors independently of the amount of message traffic, and as the problem
grows the number of messages grows along with it.

7.4 Growth Control

7.4.1 Conditional Expressions

An idea explored by Page, Conant, and Grit [69] for controlling growth
through rules for executing conditional expressions can also be used in paral-
lel logic programs. Given a conditional expression in a functional language,
such as

f(X) = if p(X) then g(X) else h(X)

we have two choices for scheduling the evaluation. The “eager beaver” policy
is to evaluate p, g, and h all in parallel. As soon as the value of p is deter-
mined, the computation of either g or h can be aborted if it is still active.
This policy wastes a lot of resources, since one branch of the conditional is
always ignored. The more restrained approach would evaluate p first, and
then either g or h, depending on the outcome. The overall evaluation of f is
slower, but no resources are wasted.

In an earlier chapter we saw how to write the equivalent conditional ex-
pression as a logic program:

Growth Control 129

f(X,Y) ← p(X) ∧ g(X,Y).

f(X,Y) ← not(p(X)) ∧ h(X,Y).

A parallel OR process for the goal f(a,Y)would create two AND descendants
simultaneously. One of these would start an OR process for p(a) and the
other would start an OR process for not(p(a)). Since, presumably, one of
these always fails, this is a waste of resources.

A better technique for this situation is to introduce a conditional opera-
tion such as the -> operator of DEC-10 Prolog. In the clause

f(X,Y) :- p(X) -> g(X,Y) ; h(X,Y).

if p(X) succeeds, the system continues with g(X,Y), otherwise it solves
h(X,Y). In a parallel system, an AND process for this clause could cre-
ate an OR process for p(X); then, depending on the result, it would create
a process for either g(X,Y) or h(X,Y). Note that the dataflow graph for the
body of this clause has three independent nodes if X is bound when the clause
is called. When the system is not busy it could start all three at the same
time; when the load is high, it could be more conservative and wait until p
is solved or not before starting a process for one of the other two.

7.4.2 Process Priorities

A second inhibitor of parallelism is simply to switch to a sequential com-
putation when the PEs start to become loaded. However, as discussed in
Chapter 3, it would be a mistake to have a PE start using a depth first
interpreter when it thinks the system is heavily loaded, since a depth first
interpreter does not always generate as many results as a parallel interpreter.
If the system switched models depending on current workload, a procedure
might generate a result when used in a small program and fail to generate
the same result when called from a larger program.

The PEs should keep executing according to the rules of the AND/OR
Process Model, but in a mode where the processes selected for execution are,
in general, the processes that would execute in a sequential system. This can
be implemented by assigning a priority to each new process. For example,
when an OR process creates more than one AND descendant when the system
is busy, it could give the process for the first clause in the procedure a higher
priority than the remaining processes, and the OR process could pass its
priority level on to its descendants.

7.4.3 Message Protocols

An idea mentioned briefly in Chapter 3 is the use of communication protocols
for growth control. In the basic model, OR processes immediately send a redo

130 Implementation

message to their AND descendants each time the descendant sends a success.
This protocol keeps the system busy in anticipation that all results will be
needed as soon as possible.

The back-up OR parallelism in the system of Furukawa, Nitta, and Mat-
sumoto takes a much more conservative approach. In this system an OR
process tries to stay one jump in front of its parent, by keeping just one
additional result at any time. An interesting area for future research is the
development of protocols that allow varying amounts of parallel activity,
based on programmer annotations or system load factors. Another possi-
bility to explore is the use of bounded buffers in the communication paths
between processes [15]; if a descendant tries to send a success on a full chan-
nel, it would be blocked, unable to process any of its incoming messages,
until there is room in the channel.

7.4.4 Secondary Memory

In spite of efforts to control growth, it is inevitable that a point will be
reached when there is too much activity in the system. When that happens,
blocked processes will have to be stored in secondary memory until they are
ready for execution.

Simulations done so far show that as the AND/OR tree of processes is
formed, the processes toward the top of the tree will be idle while descendants
at the frontier of the tree actively carry out their tasks. Eventually success
messages work back to the top of the process tree. This observation can form
the basis of an efficient use for a secondary memory.

When a PE’s memory starts to become filled with processes, blocked
processes can be written out to the secondary memory. The processes written
out should be those at the top of the tree. When room is made available in
main memory again, processes can be read back in. One can envision a
“vacuum” effect here as the processes are brought back in as the amount of
memory devoted to active processes shrinks. The decision of which processes
to bring back should be based on how close they are to the current frontier
of the AND/OR tree of processes. The system can anticipate their need,
before any active process actually sends a message to one of them. A similar
idea is used in the FFP machine, where symbols that expand past the end
of the array of L cells are stored in stacks in virtual memory [62]. Secondary
memory systems in von Neumann architectures are not so predicatable. If a
program makes a reference to information not currently in main memory, it is
blocked until the information is retrieved. There is no way to anticipate which
information currently on disk will be needed next, so information stays there
until there is a demand for it. In the AND/OR Process Model, the regular
structure of process interconnection, and the relative predictability of when a
process will be activated, may lead to very efficient use of secondary memory.

Summary 131

This idea can be extended to situations where memory is filled with only
ready processes, after all blocked processes have been moved to secondary
storage. During the solution of very large problems, a PE’s memory will
overflow with processes and messages. The first step in alleviating the con-
gestion is to move out blocked processes, those corresponding to activity at
the top of the AND/OR tree. As the tree continues to grow, a point will be
reached where memory will contain only ready processes and their incoming
messages. The second stage is to store some subset of these active processes
and their messages. Again, the regular structure of the tree of processes
will help determine which process/message pairs to move out. Siblings, or
processes at the same level in general, do not send messages directly to one
another. So, at this stage, processes and messages from the “bottom right”
of the tree can be stored, since execution of processes from the “bottom left”
will not send them messages. A global view of the expansion of the AND/OR
tree of processes can be characterized as mostly breadth first, as processes
create descendants in parallel. When PEs become saturated, and active pro-
cesses moved out of main memory, the expansion will tend toward depth first,
as the leftmost parts of the tree are expanded while the rightmost part stays
in secondary memory.

The success of this scheme for storing inactive processes will depend heav-
ily on the structure and operation of connections between the PEs and sec-
ondary memory. One possibility is to use a second network for this use; have
PEs send processes and messages via the primary interconnection network,
and use the second for storing processes. This may not be necessary if the
migration scheme for process allocation is used. With a migration policy,
when the system is overloaded with processes, the communication channels
will not be heavily used, since each node is busy. In that case the channels are
free for moving blocked processes to nodes connected to secondary memory.

7.5 Summary

The AND/OR Process Model is an abstract model for parallel execution
of logic programs. It is an execution model, an abstract interpreter at the
Operation layer of the hierarchy of Figure 1.1. In this chapter we moved
down a level to the Implementation layer. Techniques used in four different
implementations were sketched. Two of the more difficult problems – repre-
sentation of binding environments and efficient implementation of backward
execution – have been solved, and there are promising ideas for the prob-
lems of growth control and process allocation. All of the ideas discussed here
need to be extensively tested in multiprocessor implementations, and the
AND/OR Process Model itself compared with other parallel models, before
we consider moving on to the next layer.

132 Implementation

Bibliography

[1] Backus, J. Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs. Commun. ACM
21, 8 (Aug. 1978), 613–641.

[2] Bic, L. Data-driven logic: A basic model. In Proceedings of the In-
ternational Workshop on High-Level Computer Architecture 84, (May
21–25), 1984, pp. 1.20–1.25.

[3] Borgwardt, P. Parallel Prolog using stack segments on shared memory
multiprocessors. In Proceedings of the 1984 International Symposium
on Logic Programming, (Atlantic City, NJ, Feb 6–9), 1984, pp. 2–11.

[4] Borgwardt, P. and Rea, D. Distributed Semi-Intelligent Backtracking
for a Stack-Based AND-parallel Prolog. CRL Tech. Rep. CR86-06,
Computer Research Laboratory, Tektronix, Inc., July 1986. (To be
presented at the 1986 Symposium on Logic Programming, Salt Lake
City, UT.).

[5] Bowen, K.A. Concurrent execution of logic. In Proceedings of the First
International Logic Programming Conference, (Faculté des Sciences de
Luminy, Marseille, France, Sept.), 1982, pp. 26–30.

[6] Bruynooghe, M. Solving combinatorial search problems by intelligent
backtracking. Information Processing Letters 12, 1 (Feb. 1981), 36–39.

[7] Bruynooghe, M. and Pereira, L.M. Deduction Revision by Intelligent
Backtracking. Report CW 30, Katholieke Universiteit Leuven, Hever-
lee, Belgium, 1983.

[8] Burton, F.W. and Sleep, M.R. Executing functional programs on a vir-
tual tree of processors. In Proceedings of the Conference on Functional
Programming Languages and Computer Architecture, (Wentworth-by-
the-Sea, NH, Oct. 18–22), ACM, 1981, pp. 187–194.

133

134 Bibliography

[9] Chang, J-H and Despain, A.M. Semi-intelligent backtracking of Pro-
log based on static dependency analysis. In Proceedings of the 1985
International Symposium on Logic Programming, (Boston, MA, July
15–18), 1985, pp. 10–21.

[10] Chang, J-H, Despain, A.M., and DeGroot, D. AND-parallelism of logic
programs based on static data dependency analysis. In COMPCON
Spring 85, (Feb.), IEEE, 1985, pp. 218–225.

[11] Ciepielewski, A. and Haridi, S. Formal Models for Or-Parallel Exe-
cution of Logic Programs. CSALAB Working Paper 821121, Royal
Institute of Technology, Stockholm, Sweden, 1982.

[12] Ciepielewski, A. and Haridi, S. Storage Models for Or-Parallel Execu-
tion of Logic Programs. Tech. Rep. TRITA-CS-8301, Royal Institute
of Technology, Stockholm, Sweden, 1983.

[13] Ciepielewski, A. and Haridi, S. Control of activities in the OR-parallel
token machine. In Proceedings of the 1984 International Symposium
on Logic Programming, (Atlantic City, NJ, Feb 6–9), 1984, pp. 49–57.

[14] Clark, K.L. Negation as failure. In Gallaire, H. and Minker, J., editors,
Logic and Databases, Plenum Press, 1978.

[15] Clark, K.L. and Gregory, S. A relational language for parallel program-
ming. In Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, (Wentworth-by-the-Sea, NH,
Oct. 18–22), ACM, 1981, pp. 171–178.

[16] Clark, K.L. and Gregory, S. Notes on system programming in Parlog.
In Proceedings of the International Conference on Fifth Generation
Computer Systems, (Tokyo, Japan), 1984, pp. 299–306.

[17] Clark, K.L. and Gregory, S. PARLOG: Parallel programming in logic.
ACM Trans. Prog. Lang. Syst. 8, 1 (Jan. 1986), 1–49.

[18] Clark, K.L. and McCabe, F. The control facilities of IC-Prolog. In
Michie, D., editor, Expert Systems in the Microelectronic Age, Edin-
burgh University Press, 1979.

[19] Conery, J.S. The AND/OR Process Model for Parallel Interpreta-
tion of Logic Programs. PhD thesis, Univ. of California, Irvine, 1983.
(Computer and Information Science Tech. Rep. 204).

[20] Conery, J.S. Closed Environments: Partitioned Memory Represen-
tation for Parallel Logic Programs. Tech. Rep. 86-02, University of
Oregon, 1986.

Bibliography 135

[21] Conery, J.S. and Kibler, D.F. Parallel interpretation of logic programs.
In Proceedings of the Conference on Functional Programming Lan-
guages and Computer Architecture, (Wentworth-by-the-Sea, NH, Oct.
18–22), ACM, 1981, pp. 163–170.

[22] Crammond, J.A. A comparative study of unification algorithms for
or-parallel execution of logic languages. In Proceedings of the 1985
International Conference on Parallel Processing, (August 20–23), 1985,
pp. 131–138.

[23] Crammond, J.A. and Miller, C.D.F. An architecture for parallel logic
languages. In Proceedings of the Second International Logic Program-
ming Conference, (Uppsala, Sweden, July 2–6), 1984, pp. 183–194.

[24] Dahl, V. On database systems development through logic. ACM Trans.
Database Syst. 7, 1 (March 1982), 102–123.

[25] DeGroot, D. Restricted AND-parallelism. In Proceedings of the Inter-
national Conference on Fifth Generation Computer Systems, (Tokyo,
Japan), 1984, pp. 471–478.

[26] Deliyanni, A. and Kowalski, R.A. Logic and semantic networks. Com-
mun. ACM 22, 3 (March 1979), 184–192.

[27] Dembinski, P. and Maluszynski, J. AND-parallelism with intelligent
backtracking for annotated logic programs. In Proceedings of the 1985
International Symposium on Logic Programming, (Boston, MA, July
15–18), 1985, pp. 29–38.

[28] Dijkstra, E.W. A Discipline of Programming. Prentice-Hall, Engle-
wood Cliffs, NJ, 1976.

[29] Dobry, T., Despain, A.M., and Patt, Y. Performance studies of a
Prolog machine architecture. In Proceedings of the 12th International
Symposium on Computer Architecture, (Boston, MA, June 17–19),
1985, pp. 180–190.

[30] Dwork, C., Kanellakis, P.C., and Mitchell, J.C. On the sequential
nature of unification. J. Logic Programming 1, 1 (June 1984), 35–50.

[31] Eisinger, N., Kasif, S., and Minker, J. Logic programming: A parallel
approach. In Proceedings of the First International Logic Programming
Conference, (Faculté des Sciences de Luminy, Marseille, France, Sept.),
1982, pp. 1–8.

[32] van Emden, M.H. and Kowalski, R.A. The semantics of predicate logic
as a programming language. J. ACM 23, 4 (Oct. 1976), 773–742.

136 Bibliography

[33] van Emden, M.H. and de Lucena Filho, G.J. Predicate logic as a
language for parallel programming. In Clark, K.L. and Tärnlund, S-
Å., editors, Logic Programming, Academic Press, New York, NY, 1982,
pp. 189–198.

[34] Furukawa, K., Nitta, K., and Matsumoto, Y. Prolog interpreter based
on concurrent programming. In Proceedings of the First International
Logic Programming Conference, (Faculté des Sciences de Luminy, Mar-
seille, France, Sept.), 1982, pp. 38–44.

[35] Gallaire, H. and Minker, J., editors. Logic and Data Bases. Plenum
Press, New York, NY, 1978.

[36] Goldberg, A. and Robson, D. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, Reading, MA, 1983.

[37] Gostelow, K.P. and Thomas, R. Performance of a simulated dataflow
computer. IEEE Trans. Comput. C-29, 10 (Oct. 1980), 905–919.

[38] Goto, A., Tanaka, H., and Moto-Oka, T. Highly parallel inference
engine PIE – goal rewriting model and machine architecture. New
Generation Computing 2, (1984), 37–58.

[39] Halim, Z. and Watson, I. An OR-parallel data-driven model for logic
programs. In Proceedings of the International Workshop on High-Level
Computer Architecture 84, (May 21–25), 1984, pp. 1.26–1.36.

[40] Haridi, S. Logic Programming Based on a Natural Deduction System.
PhD thesis, Royal Institute of Technology, Stockholm, Sweden, 1981.
Report TRITA-CS-8104.

[41] Hewitt, C.E., Attardi, G., and Lieberman, H. Specifying and proving
properties of guardians for distributed systems. In Kahn, G., editor, Se-
mantics of Concurrent Computation, Springer-Verlag, New York, NY,
1979, pp. 316–336.

[42] Hoare, C.A.R. Communicating sequential processes. Commun. ACM
21, 8 (Aug. 1978), 666–667.

[43] Hogger, C.J. Concurrent logic programming. In Clark, K.L. and
Tärnlund, S-Å., editors, Logic Programming, Academic Press, New
York, NY, 1982, pp. 199–211.

[44] Hopcroft, J.E. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA, 1979.

Bibliography 137

[45] Ito, N. and Masuda, K. Parallel inference machine based on the data
flow model. In Proceedings of the International Workshop on High-
Level Computer Architecture 84, (May 21–25), 1984, pp. 4.31–4.40.

[46] Ito, N., Shimizu, H., Kishi, M., Kuno, E., and Rokusawa, K. Data-flow
based execution mechanisms of parallel and Concurrent Prolog. New
Generation Computing 3, 1 (1985), 15–41.

[47] Kacsuk, P. A highly parallel Prolog interpreter based on the generalized
data flow model. In Proceedings of the Second International Logic
Programming Conference, (Uppsala, Sweden, July 2–6), 1984, pp. 195–
205.

[48] Kalé, L.V. Parallel Architectures for Problem Solving. PhD thesis,
SUNY Stony Brook, Dec. 1985. (Univ. of Illinois at Urbana-Champaign
Tech. Rep. UIUCDCS-R-85-1237).

[49] Kaneda, Y., Tamura, N., Wada, K., and Matsuda, H. Sequential Prolog
machine PEK architecture and software system. In Proceedings of
the International Workshop on High-Level Computer Architecture 84,
(May 21–25), 1984, pp. 4.1–4.6.

[50] Kasif, S., Kohli, M., and Minker, J. PRISM: A parallel inference system
for problem solving. In Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, (Karlsruhe, Germany, Aug. 8–12),
1983, pp. 544–546.

[51] Katz, E.P. A Realization of Relational Semantics in an Automatic
Programming System. PhD thesis, Univ. of Southwest Louisiana, 1978.

[52] Keller, R.M., Lin, F.C.H., and Tanaka, J. Rediflow multiprocessing.
In COMPCON Spring 84, IEEE, Feb. 1984, pp. 410–417.

[53] Kibler, D.F. and Porter, B. Episodic learning. In Proceedings of the
Eighth International Joint Conference on Artificial Intelligence, (Karl-
sruhe, Germany, Aug. 8–12), 1983.

[54] Kowalski, R.A. Predicate logic as a programming language. In Infor-
mation Processing 74, IFIPS, 1974, pp. 569–574.

[55] Kumon, K., Masuzawa, H., Itashiki, A., Satoh, K., and Sohma, Y.
KABU-WAKE: A new parallel inference method and its evaluation. In
COMPCON Spring 86, IEEE, 1986.

[56] Li, G. and Wah, B.W. MANIP-2: A multicomputer architecture for
evaluating logic programs. In Proceedings of the 1985 International
Conference on Parallel Processing, (August 20–23), 1985, pp. 123–130.

138 Bibliography

[57] Li, P. and Martin, A.J. The Sync Model for Parallel Execution of Logic
Programming. Tech. Rep., California Inst. of Technology, July 1986.
(To be presented at the 1986 Symposium on Logic Programming, Salt
Lake City, UT.).

[58] Lindstrom, G. OR parallelism on applicative architectures. In Pro-
ceedings of the Second International Logic Programming Conference,
(Uppsala, Sweden, July 2–6), 1984, pp. 159–170.

[59] Lindstrom, G. and Panangaden, P. Stream based execution of logic
programs. In Proceedings of the 1984 International Symposium on
Logic Programming, (Atlantic City, NJ, Feb 6–9), 1984, pp. 168–176.

[60] Lipovski, G.J. and Hermenegildo, M.V. B-Log: A branch and bound
methodology for the parallel execution of logic programs. In Proceed-
ings of the 1985 International Conference on Parallel Processing, (Au-
gust 20–23), 1985, pp. 560–567.

[61] MacLennan, B.J. Introduction to relational programming. In Pro-
ceedings of the Conference on Functional Programming Languages
and Computer Architecture, (Wentworth-by-the-Sea, NH, Oct. 18–22),
ACM, 1981, pp. 213–220.

[62] Magó, G. The FFP machine – A progress report. In Proceedings of
the International Workshop on High-Level Computer Architecture 84,
(May 21–25), 1984, pp. 5.13 –5.25.

[63] Martelli, A. and Montanari, U. An efficient unification algorithm.
ACM Trans. Prog. Lang. Syst. 4, 2 (Apr. 1982), 258–282.

[64] Monteiro, L. A Horn clause-like logic for specifying concurrency. In
Proceedings of the First International Logic Programming Conference,
(Faculté des Sciences de Luminy, Marseille, France, Sept.), 1982, pp. 1–
8.

[65] Nakagawa, H. AND parallel Prolog with divided assertion set. In Pro-
ceedings of the 1984 International Symposium on Logic Programming,
(Atlantic City, NJ, Feb 6–9), 1984, pp. 22–28.

[66] Nakamura, K. Associative concurrent evaluation of logic programs. In
Proceedings of the Second International Logic Programming Confer-
ence, (Uppsala, Sweden, July 2–6), 1984, pp. 321–331.

[67] Nakazaki, R., et al. Design of a high-speed Prolog machine (HPM). In
Proceedings of the 12th International Symposium on Computer Archi-
tecture, (Boston, MA, June 17–19), 1985, pp. 191–197.

Bibliography 139

[68] Nilsson, N.J. Problem Solving Methods in Artificial Intelligence.
McGraw-Hill, New York, NY, 1971.

[69] Page, R.L., Conant, M.G., and Grit, D.H. If-then-else as a concur-
rency inhibitor in eager beaver evaluation of recursive programs. In
Proceedings of the Conference on Functional Programming Languages
and Computer Architecture, (Wentworth-by-the-Sea, NH, Oct. 18–22),
ACM, 1981, pp. 179–186.

[70] Pereira, F.C.N. and Warren, D.H.D. Definite clause grammars for lan-
guage analysis – a survey of the formalism and a comparison with
augmented transition networks. Artificial Intelligence 13, (1980), 231–
278.

[71] Pereira, L.M. Logic Control with Logic. Report 2/82, Dept. de Infor-
matica, Univ. Nova de Lisboa, Feb. 1982.

[72] Pereira, L.M., Pereira, F.C.N., and Warren, D.H.D. Users Guide to
DECsystem-10 Prolog. Tech. Rep., Dept. of Artificial Intelligence,
Univ. of Edinburgh, Sep. 1978.

[73] Pereira, L.M. and Porto, A. Intelligent Backtracking and Sidetrack-
ing in Horn Clause Programs – the Theory. Report 2/79, Dept. de
Informatica, Univ. Nova de Lisboa, Oct. 1979.

[74] Pereira, L.M. and Porto, A. An Interpreter of Logic Programs Using
Selective Backtracking. Report 3/80, Dept. de Informatica, Univ. Nova
de Lisboa, July 1980.

[75] Robinson, I. A Prolog Processor Based on a Pattern Matching Memory
Device. Tech. Rep., Schlumberger Palo Alto Research AI Lab, Palo
Alto, CA, 1986. (To be presented at the 1986 International Conference
on Logic Programming, London, England.).

[76] Robinson, J.A. A machine oriented logic based on the resolution prin-
ciple. J. ACM 12, 1 (Jan. 1965), 23–41.

[77] Shapiro, E.Y. and Takeuchi, A. Object oriented programming in Con-
current Prolog. New Generation Computing 1, (1983), 25–48.

[78] Shapiro, E.Y. A Subset of Concurrent Prolog and its Interpreter.
Tech. Rep. TR-003, Institute for New Generation Computer Technol-
ogy, Tokyo, Japan, Jan. 1983.

[79] Singh, V. and Genesereth, M.R. PM: A Parallel Execution Model for
Backward-Chaining Deductions. KSL Report KSL-85-18, Knowledge
Systems Laboratory, Computer Science Department, Stanford Univ.,
May 1985.

140 Bibliography

[80] Subrahmanyam, P.A. The “software engineering” of expert systems: Is
Prolog appropriate? IEEE Trans. Softw. Eng. SE-11, 11 (Nov. 1985),
1391–1400.

[81] Taki, K., Yokota, M., Yamamoto, A., Nishikawa, H., Uchida, S.,
Nakashima, H., and Mitsuishi, A. Hardware design and implemen-
tation of the personal sequential inference machine (PSI). In Proceed-
ings of the International Conference on Fifth Generation Computer
Systems, (Tokyo, Japan), 1984, pp. 398–409.

[82] Tamura, N. and Kaneda, Y. Implementing parallel Prolog on a multi-
processor machine. In Proceedings of the 1984 International Sympo-
sium on Logic Programming, (Atlantic City, NJ, Feb 6–9), 1984, pp. 42–
48.

[83] Taylor, S., Lowry, A., Maguire, G.Q., and Stolfo, S.J. Logic program-
ming using parallel associative operations. In Proceedings of the 1984
International Symposium on Logic Programming, (Atlantic City, NJ,
Feb 6–9), 1984, pp. 58–68.

[84] Tick, E. Towards a multiple pipelined Prolog processor. In Proceedings
of the International Workshop on High-Level Computer Architecture
84, (May 21–25), 1984, pp. 4.7–4.17.

[85] Tick, E. and Warren, D.H.D. Towards a pipelined Prolog processor. In
Proceedings of the 1984 International Symposium on Logic Program-
ming, (Atlantic City, NJ, Feb 6–9), 1984, pp. 29–40.

[86] Turner, D.A. A new implementation technique for applicative lan-
guages. Software – Practice and Experience 9, 1 (Jan. 1979), 31–49.

[87] Ueda, K. Guarded Horn Clauses. Tech. Rep. TR-103, Institute for
New Generation Computer Technology, Tokyo, Japan, June 1985.

[88] Umeyama, S. and Tamura, K. A parallel execution model of logic pro-
grams. In Proceedings of the 10th International Symposium on Com-
puter Architecture, (Stockholm, Sweden, June 13–17), 1983, pp. 349–
355.

[89] Warren, D.H.D. WARPLAN: A System for Generating Plans. Pa-
per 76, Dept. of Artificial Intelligence, Univ. of Edinburgh, June 1974.

[90] Warren, D.H.D. Applied Logic – Its Use and Implementation as a
Programming Tool. PhD thesis, Univ. of Edinburgh, 1977. (SRI Tech.
Note 290, June 1983).

Bibliography 141

[91] Warren, D.H.D. Implementing Prolog: Compiling Predicate Logic Pro-
grams. DAI Research Papers 39 and 40, Dept. of Artificial Intelligence,
Univ. of Edinburgh, May 1977.

[92] Warren, D.H.D. Logic programming and compiler writing. Software –
Practice and Experience 10, (1980), 97–125.

[93] Warren, D.H.D. Efficient Processing of Interactive Relational Database
Queries Expressed in Logic. Paper 156, Dept. of Artificial Intelligence,
Univ. of Edinburgh, Sep. 1981.

[94] Warren, D.H.D. Higher-Order Extensions to Prolog – Are They
Needed? Paper 165, Dept. of Artificial Intelligence, Univ. of Edin-
burgh, Sep. 1981.

[95] Warren, D.H.D. An Abstract Prolog Instruction Set. Tech. Note 309,
SRI International, Oct. 1983.

[96] Warren, D.H.D. and Pereira, F.C.N. An Efficient Easily Adaptable
System for Interpreting Natural Language Queries. Paper 155, Dept.
of Artificial Intelligence, Univ. of Edinburgh, Feb. 1981.

[97] Warren, D.H.D., Pereira, L.M., and Pereira, F.C.N. Prolog – the lan-
guage and its implementation compared with LISP. ACM SIGPLAN
Notices 12, 8 (1977), 109–115.

[98] Warren, D.S., Ahamad, M., Debray, S.K., and Kalé, L.V. Executing
distributed Prolog programs on a broadcast network. In Proceedings
of the 1984 International Symposium on Logic Programming, (Atlantic
City, NJ, Feb 6–9), 1984, pp. 12–21.

[99] Wise, M.J. A parallel Prolog: The construction of a data driven model.
In Conference Record of the Symposium on LISP and Functional Pro-
gramming, (Pittsburgh, PA, Aug. 15–18), ACM, 1982, pp. 55–66.

[100] Woo, N.S. and Choe, K-M. Selecting the Backtrack Literal in the AND
Process of the AND/OR Process Model. Tech. Rep., AT&T Bell Labs,
Murray Hill, NJ, Jan. 1986. (To be presented at the 1986 Symposium
on Logic Programming, Salt Lake City, UT.).

[101] Wulf, W.A. and Shaw, M. Abstraction and verification in ALPHARD:
Defining and specifying iteration and generators. Commun. ACM 20,
8 (Aug. 1977), 553–564.

[102] Yasuhara, H. and Nitadori, K. ORBIT: A parallel computing model of
Prolog. New Generation Computing 2, (1984), 277–288.

142 Bibliography

Index

a

actors 37, 67
AND parallelism 43, 59

with OR parallelism 60
defined 35
induced 43, 47

AND process 52, 63, 121ff
defined 52
sequential 63, 67

arguments 8
arithmetic operations 19
arity 8
assertion 9
atom 8

b

backtracking 22, 24
defined 17

backward execution 98, 100
example 107, 123

binding environment
see environment

bitset 121–123
blocked literal 93

c

cache 102, 113, 124–126
cancel 102
candidate 102, 112, 121

defined 100
clause 8

communication channel 32
complex terms 8
Concurrent Prolog 51, 56

objects in 51
conditional expressions 70, 71, 128

defined 24
connection rule 88, 89, 90, 104
constructive proof 12, 16
consumers

defined 84
in IC-Prolog 32

control
alternative sequential 26
coroutine 32
defined 16
standard sequential 17
use of heuristics 28

coroutine 32
cut 41, 70, 70

defined 22

d

database 9, 117
applications 9, 27, 48
machine 46

dataflow graph 41, 99, 104, 121
acyclic 85, 88
in AND parallel models 54
in AND process 85

dataflow 93, 97, 128
firing rule 93

denotation 12, 26, 35, 64, 73, 116
defined 12

143

144 Index

depth-first search 17, 26
deterministic goal 11, 37, 85, 118

with cut 24
defined 11

e

enabled literal 95
environment 71

AND process 95, 120
OR process 76
OR-parallel 38–40, 44

binding array 40
directory tree 39
hash window 39
imported variables 40, 120
kabu-wake 40

Prolog 38
evaluable predicates 20, 70

and semantics 21

f

fail
as a goal 25

forward execution 93
example 106

function 11
function 21, 24, 84, 95

definition in a logic program
11

divide and conquer 90

g

generator 98, 100, 104
defined 84

goal (literal) 9
goal statement 9
goal tree 23, 26, 35, 56

branching factor in 27
defined 17
parallel search 35

graph reduction 93
growth control 40, 128–131

OR process 43, 81
Parlog 40
pure OR parallel 41

guard 50

h

head of clause 95, 102, 108, 121
in dataflow graph 85

heuristics
in ordering literals 86

higher order functions 21
Horn clause 14

i

implication 9
index 121
infinite branch

OR process 81
Prolog 81

infinite data structures 32
infinite domains 115
infix notation 19
intelligent backtracking 92, 99, 113,

116
defined 29

interpreter plots 68
interpreter 26, 120

defined 13
execution step 16

l

leftmost rule 88, 89, 92
defined 99

list 22, 30
defined 19

literal ordering 83
example 89–92, 104

literal 8

Index 145

m

map coloring 91, 98, 123–126
marks 100, 121
matrix multiplication 95
message

cancel 66
fail 66

AND process 100
OR process 75

order of arrival 119
AND process 111
OR process 79

redo 66
AND process 102, 108
OR process 75

start 65
AND process 87
OR process 75

success 66
AND process 93
OR process 75

migration 127
modes 21

used in ordering literals 86
multiple failures 113
multiset (duplicate results) 116

n

negation as failure 70
and nonground goals 26
defined 25

negative literal 13, 14, 25
nested loops 98, 115
nondeterminism

and cut 23
committed choice (“don’t care”)

50, 53, 57, 59, 85
exploratory (“don’t know”) 50,

57, 59, 60, 118
nondeterministic goal 11
null clause 9, 17, 26, 27

o

OR parallelism 59
backup 43
with AND parallelism 60
defined 35
pure 37, 47, 58

defined 39
OR process 37, 47, 63

defined 42
modes of parallel 74
sequential 63, 66, 73
state variables 75

oracle 64
ordering literals

compile time 54
dataflow graph 54
in AND process 86, 121

p

Parlog 40, 50, 52, 56
parsing 12
partial binding 30

in AND process 95
PE 70, 120, 126–128
pending literal 93
principle functor 8
procedure 9
producer 32
Prolog 7, 19, 71, 115, 116

virtual machine for 59
Prolog machine

in parallel systems 58
process allocation 126

146 Index

r

read-only variable 51
reset

in AND process 100, 102, 113,
124–126

nested loop 98
resolution 13, 25

s

search parallelism 37, 47
defined 45

semantics
(see denotation)

semi-intelligent backtracking 30
solved literal

defined 93
stack frame

see environment
stream parallelism 52, 56

defined 48
in AND processes 53

substitution
defined 14

syntax 8ff

t

threshold 21, 55
tuple of terms 12, 26, 98

u

unification 17
defined 13
in databases 48
parallel 58

v

variable 8
bound to another variable 16
defined 8
effect of binding on search 28
shared

AND parallel 48, 52, 83, 89
clause body 64
OR parallel 39, 67, 120

