1) Dielectric Response

As a simple model of a dielectric, consider \(N \) charged harmonic oscillators (charge \(e \), mass \(m \), resonance frequency \(\omega_0 \), damping coefficient \(\gamma \)) in a volume \(V \), for an oscillator density \(n = N/V \). The oscillators are driven by an external electric field \(E(t) \), so the equation of motion for each oscillator is

\[
m(\ddot{x} + \omega_0^2 x + \gamma \dot{x}) = eE(t)
\]

a) Show that the Fourier transform of the resulting polarization \(P \) is

\[
P(\omega) = \chi(\omega) E(\omega)
\]

with a susceptibility

\[
\chi(\omega) = \frac{\omega_p^2/4\pi}{-\omega^2 + \omega_0^2 - i\gamma\omega}
\]

where \(\omega_p = \sqrt{4\pi ne^2/m} \) is the plasma frequency.

b) Fourier backtransform to find the time-dependent susceptibility \(\chi(t) \). Convince yourself that the response is properly retarded, i.e., that \(\chi(t) = 0 \) for \(t < 0 \).

c) What is the relation between the polarization \(P(t) \) at time \(t \) and the field \(E(t') \) at time \(t' \)? What is the length \(T \) of the time interval during which the source field \(E \) substantially influences the response of the system?

(13 points)

2) Linear accelerator

As a simple model for a linear accelerator, consider a charged point particle that travels with constant velocity \(v_0 \) for times \(t < 0 \), then gets accelerated with constant acceleration \(a \) for times \(0 \leq t \leq T \), and travels with constant velocity \(v_1 = v_0 + aT \) again for times \(t > T \).

a) Calculate, sketch, and discuss the radiated energy per frequency,

\[
dU/d\omega = \frac{2e^2}{3\pi c^3} |\dot{\psi}(\omega)|^2
\]

How does the spectrum change qualitatively as a function of \(T \)?

b) Calculate the total radiated power \(P \), and show that you recover the Larmor formula

\[
P = \frac{2e^2}{3c^3} a^2
\]

for a uniformly accelerated point particle.

hint: \[
\int_0^{\infty} dx \frac{\sin^2 x}{x^2} = \frac{\pi}{2}
\]

(11 points)