9. **Pauli group**

The Pauli matrices are complex 2×2 matrices defined as

\[
\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
\]

Now consider the set P_1 that consists of the Pauli matrices and their products with the factors -1 and $\pm i$:

\[
P_1 = \{ \pm \sigma_0, \pm i\sigma_0, \pm \sigma_1, \pm i\sigma_1, \pm \sigma_2, \pm i\sigma_2, \pm \sigma_3, \pm i\sigma_3 \}
\]

Show that this set of 16 elements forms a (nonabelian) group under matrix multiplication called the Pauli group. It plays an important role in quantum information theory.

(3 points)

10. **The group S_3**

 a) Compile the group table for the symmetric group S_3. Is S_3 abelian?

 b) Find all subgroups of S_3. Which of these are abelian?

 (6 points)

11. **Abelian groups**

 Let (G, \lor) be a group with neutral element e. Let $a \in G$ be a fixed element, and define a mapping $\varphi : G \to G$ by $\varphi(x) = a \lor x \lor a^{-1}$ $\forall x \in G$.

 a) Show that φ defines an automorphism on G, called an inner automorphism.

 b) Show that abelian groups have no inner automorphisms except for the identity mapping $\varphi(x) = x$.

 c) Let $g \lor g = e \ \forall g \in G$. Prove that G is abelian.

 (6 points)

12. **Fields**

 a) Show that the set of rational numbers \mathbb{Q} forms a commutative field under the ordinary addition and multiplication of numbers.

 b) Consider a set F with two elements, $F = \{ \theta, e \}$. On F, define an operation “plus” (+), about which we assume nothing but the defining properties

 \[
 \theta + \theta = \theta, \quad \theta + e = e + \theta = e, \quad e + e = \theta
 \]

 Further, define a second operation “times” (·), about which we assume nothing but the defining properties

 \[
 \theta \cdot \theta = e \cdot \theta = \theta \cdot e = \theta, \quad e \cdot e = e
 \]

 Show that with these definitions (and no additional assumptions), F is a field.

 (7 points)