1.2.2 Products
Prove the corollary to proposition 2 of ch.1 §2.2: If \(a \) is an element of a multiplicative group, and \(n, m \in \mathbb{N} \), then

a) \(a^n a^m = a^{n+m} \)

b) \((a^n)^m = a^{nm} \)

(2 points)

1.2.3 The group \(S_3 \)

a) Compile the group table for the symmetric group \(S_3 \). Is \(S_3 \) abelian?

b) Find all subgroups of \(S_3 \). Which of these are abelian?

(6 points)

1.2.4 Abelian groups
Let \((G, \lor)\) be a group with neutral element \(e \). Let \(a \in G \) be a fixed element, and define a mapping \(\varphi : G \to G \) by \(\varphi(x) = a \lor x \lor a^{-1} \forall x \in G \).

a) Show that \(\varphi \) defines an automorphism on \(G \), called an inner automorphism.

b) Show that abelian groups have no inner automorphisms except for the identity mapping \(\varphi(x) = x \).

c) Let \(g \lor g = e \forall g \in G \). Prove that \(G \) is abelian.

(6 points)

1.3.1 Fields

a) Show that the set of rational numbers \(\mathbb{Q} \) forms a commutative field under the ordinary addition and multiplication of numbers.

b) Consider a set \(F \) with two elements, \(F = \{ \theta, e \} \). On \(F \), define an operation “plus” (+), about which we assume nothing but the defining properties

\[\theta + \theta = \theta \quad , \quad \theta + e = e + \theta = e \quad , \quad e + e = \theta \]

Further, define a second operation “times” (\(\cdot \)), about which we assume nothing but the defining properties

\[\theta \cdot \theta = e \cdot \theta = \theta \cdot e = \theta \quad , \quad e \cdot e = e \]

Show that with these definitions (and \textbf{no} additional assumptions), \(F \) is a field.

(7 points)