1.4.5. \(\mathbb{R} \) as a metric space

Consider the reals \(\mathbb{R} \) with \(\rho : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) defined by \(\rho(x, y) = |x - y| \). Show that this definition makes \(\mathbb{R} \) a metric space.

(3 points)

1.4.6. Limits of sequences

1. a) Show that a sequence in a metric space has at most one limit.

 hint: Assume there are two limits, and use the triangle inequality to show that they must be the same.

2. b) Show that every sequence with a limit is a Cauchy sequence.

(3 points)

1.4.7. Banach space

Let \(B \) be a \(K \)-vector space (\(k = \mathbb{R} \) or \(\mathbb{C} \)) with null vector \(\theta \). Let \(|| \ldots || : B \to \mathbb{R} \) be a mapping such that

1. \(||x|| \geq 0 \) \(\forall \) \(x \in B \), and \(||x|| = 0 \) iff \(x = \theta \).
2. \(||x + y|| \leq ||x|| + ||y|| \) \(\forall \) \(x, y \in B \).
3. \(||\lambda x|| = |\lambda| \cdot ||x|| \) \(\forall \) \(x \in B, \lambda \in K \).

Then we call \(\| \ldots \| \) a **norm** on \(B \), and \(||x|| \) the **norm** of \(x \).

Further define a mapping \(d : B \times B \to \mathbb{R} \) by

\[
d(x, y) := ||x - y|| \quad \forall \ x, y \in B
\]

Then we call \(d(x, y) \) the **distance** between \(x \) and \(y \).

1. a) Show that \(d \) is a metric in the sense of §4.5, i.e., that every linear space with a norm is in particular a metric space.

 If the normed linear space \(B \) with distance/metric \(d \) is complete, then we call \(B \) a **Banach space** or **B-space**.

2. b) Show that \(\mathbb{R} \) and \(\mathbb{C} \), with suitably defined norms, are B-spaces. (For the completeness of \(\mathbb{R} \) you can refer to §4.5 example (3), and you don’t have to prove the completeness of \(\mathbb{C} \) unless you insist.)

Now let \(B^* \) be the dual space of \(B \), i.e., the space of linear functionals \(\ell \) on \(B \), and define a norm of \(\ell \) by

\[
||\ell|| := \sup_{||x|| = 1} \{ |\ell(x)| \}
\]

1. c) Show that the such defined norm on \(B^* \) is a norm in the sense of the norm defined on \(B \) above.

(In case you’re wondering: \(B^* \) is complete, and hence a B-space, but the proof of completeness is difficult.)

(5 points)

1.4.8. Hilbert space

1. a) Show that the norm on a Hilbert space defined by §4.7 def. 1 is a norm in the sense of the definition in Problem 1.4.7.

 hint: Use the Cauchy-Schwarz inequality (§4.7 lemma).

2. b) Show that the mappings \(\ell \) defined in §4.7 def. 4 are linear forms in the sense of §4.3 def. 1(a).

(3 points)