2.3.2. Applications of the residue theorem

Use complex analysis to evaluate the real integrals

a) \[\int_{-\infty}^{\infty} dx \frac{1}{x^4 + 1} \]

b) \[\int_{-\infty}^{\infty} dx \frac{\sin x}{x} \]

hint: Write \(\sin x = (e^{ix} - e^{-ix})/2i \) and consider the resulting two integrals with complex integrands. Why is this a good strategy?

c) \[\int_{-\infty}^{\infty} dx \frac{\sin x}{x} \frac{1}{1 + x^2} \]

and check your results by means of Wolfram Alpha.

Let \(a \in \mathbb{C} \) with \(\text{Re} a > 0 \). Use the residue theorem to show that

d) \[\int_{-\infty}^{\infty} dx e^{-ax^2} = \sqrt{\frac{\pi}{a}} \]

Now let \(a \in \mathbb{R} \) and consider the integral
e) \[\int_{-\infty}^{\infty} dx \frac{1}{x^2 + a^2} \]

and define its Cauchy principal value by

\[\lim_{R \to 0} \left(\int_{-R}^{-\infty} dx f(x) + \int_{R}^{\infty} dx f(x) \right) \]

with \(f(x) = 1/x(x^2 + a^2) \). Determine the Cauchy principal value using the residue theorem. Is the result consistent with the expectation for a real symmetric integral over an antisymmetric integrand?

hint: Go around the pole on a semicircle of radius \(R \) and let \(R \to 0 \).

(17 points)
2.3.3. Matsubara frequency sum

Let \(f(z) \) have simple poles at \(z_j \) \((j = 1, 2, \ldots)\), and no other singularities. Let \(f(|z| \to \infty) \) go to zero faster than \(1/z \). Consider the infinite sum

\[
S = -T \sum_{n=-\infty}^{\infty} f(i\Omega_n)
\]

with \(\omega_n = 2\pi T n \) and \(T > 0 \). Show that

\[
S = \sum_j n(z_j) \text{Res} f(z_j)
\]

where \(n(z) = 1/(e^{z/T} - 1) \) is the Bose distribution function.

hint: Show that \(n(z) \) has simple poles at \(z = i\Omega_n \), and integrate \(n(z) f(z) \) over an infinite circle centered on the origin.

note: Sums of this form are important in finite-temperature quantum field theory. In this context, \(T \) is the temperature and \(\Omega_n \) is called a “bosonic Matsubara frequency”.

(3 points)