4.1.2. Polaritons

As a model for a dielectric, consider a polarization field \(\mathbf{P}(\mathbf{x},t) \) that determines the sources of the electromagnetic fields according to

\[
\mathbf{j} = \partial_t \mathbf{P}, \quad \rho = -\mathbf{\nabla} \cdot \mathbf{P}.
\]

In addition to Maxwell’s equations, the dynamics of the system are governed by an equation of motion for \(\mathbf{P} \),

\[
(\partial_t^2 + \omega_0^2) \mathbf{P}(\mathbf{x},t) = a^2 \mathbf{E}(\mathbf{x},t) \quad (\ast),
\]

where \(\omega_0 \) is a characteristic frequency and \(a \) is a real parameter (which dimensionally also is a frequency). This models the dielectric as a harmonic oscillator that is driven by the electric field.

a) Show that Maxwell’s equations plus (\ast) have solutions given by both longitudinal (\(\mathbf{k} \parallel \mathbf{E}, \mathbf{P} \)) and transverse (\(\mathbf{k} \perp \mathbf{E}, \mathbf{P} \)) monochromatic plane waves, and find the frequency-wavenumber relations for the various solutions.

b) Show that the transverse waves in the long-wavelength limit are photon-like, viz.,

\[
\omega_T(\mathbf{k} \to 0) = (c/n)|\mathbf{k}|,
\]

and determine the index of refraction \(n \).

c) Show that no homogeneous wave propagation is possible in a frequency band \(\omega_- < \omega < \omega_+ \), and find \(\omega_\pm \).

Derive the Lyddane-Sachs-Teller relation

\[
\frac{\omega_+^2}{\omega_-^2} = \epsilon(\omega = 0)
\]

where \(\epsilon(\omega) = 1 + 4\pi a^2/(\omega_0^2 - \omega^2) \) is the dielectric function of the dielectric.

d) Discuss the frequency-wavenumber relation for all possible waves explicitly, especially in the limits \(k \to 0 \) and \(k \to \infty \), and plot the result.

(14 points)
4.2.1. Liénard-Wiechert potentials
Consider a point charge e that moves on a given trajectory $X(t)$ with velocity $v(t) = \dot{X}(t)$ which results in charge and current densities

$$\rho(x,t) = e \delta(x - X(t)) \quad , \quad j(x,t) = e v(t) \delta(x - X(t))$$

Show that the resulting retarded potentials have the form

$$\varphi(x,t) = e \frac{|x - X(t_\perp)| - v(t_\perp) \cdot (x - X(t_\perp))}{c}$$

$$A(x,t) = \frac{1}{c} v(t_\perp) \varphi(x,t)$$

where t_\perp is the solution of

$$t_\perp = t - \frac{1}{c} |x - X(t_\perp)| \quad (*)$$

These are known as Liénard-Wiechert potentials after Alfred-M Marie Liénard and Emil Wiechert, who derived them in 1898 and 1900, respectively.

hint: Show that the equation (*) for t_\perp has one and only one solution.

(6 points)

4.2.2. Potential of a uniformly moving charge
Consider a charge e moving uniformly along the x-axis with velocity v: $X(t) = (vt, 0, 0)$. Determine the Liénard-Wiechert potentials explicitly, and show that the result is that same as the one obtained in ch. 2 §2.4 by means of a Lorentz transformation.

(6 points)
4.2.1.) ch 5 §3 =>

\[\varphi(x',t') = \int_{-\infty}^{\infty} dt' \frac{\delta(t-t' - \frac{1}{c} |x-x'|)}{|x-x'|} \phi(x',t') \]

\[= \int_{-\infty}^{\infty} dt' \frac{1}{|x-x'|} \delta(t-t' - \frac{1}{c} |x-x'|) \delta(x' - \vec{x}(t')) \]

\[= e^{\int dt' \frac{1}{|x-x'(t')|} \delta(t-t' + \frac{1}{c} |x-x'(t')|)} \]

\[\text{when } f(t') = t' - t + \frac{1}{c} |x-x'(t')| \]

\[\Rightarrow \text{New un know of } f(t') \]

\[\text{let } (ct, \vec{x}) = (0,0) \text{ un } \Delta \]

\[\Rightarrow ct' = |\vec{x}(t')| \]

while = interaction beca u weil

dim of partide will the

light cone

speed of partide < c \Rightarrow there is one and only one

\[\delta(f(t')) = \frac{1}{1\delta(t')} \delta(t'-t_-) \]

\[\text{when } f(t_-) = 0 \Rightarrow t_- = t - \frac{1}{c} |x-x'(t_-)| \]

\[\text{dimension above } \Rightarrow (x) \text{ has a unique solution } \]

\[\frac{d}{dt} f(t') = 1 + \frac{1}{c} \frac{|x-x'(t')|}{|x-x'(t')|} (-) \vec{v}(t') \cdot (x-x'(t')) \]

\[= 1 - \frac{1}{c} \vec{v}(t') \cdot (x-x'(t')) \frac{1}{|x-x'(t')|} \]

\[> 0 \text{ min } \left| \frac{\vec{v}(t')}{c} \right| < 2 \]
\[\varphi(x, t) = e^{\frac{i}{\hbar} \int_{t'} \frac{1}{x-x'(t')} \delta(t-t') \cdot \frac{1}{x-x'(t')} \frac{1}{1 - \frac{i}{\hbar} \varphi(t) \cdot (x-x'(t))}} \]

For \(\xi \neq \Delta \),

\[\bar{k}(\xi, t) = \frac{1}{\hbar} \int d\xi' dt' \frac{1}{x-x'} \delta(t-t' - \frac{i}{\hbar} |x-x'|) \varphi(x', t') \]

\[= \frac{1}{\hbar} \int d\xi' dt' \frac{1}{x-x'} \delta(t-t') \varphi(t') \delta(x-x'(t')) \]

\[= \frac{1}{\hbar} \int dt' \frac{1}{x-x'(t')} \varphi(t') \delta(x-x'(t')) \]

\[= \frac{1}{\hbar} \varphi(t) \int d\xi' \frac{1}{x-x'(t')} \frac{1}{x-x'(t')} \delta(t-t') \]

\[= \frac{1}{\hbar} \varphi(t) \varphi(x, t) \]
4.2.2. \(\text{W} \)\(\text{h} \)\(\text{i} \)\(\text{n} \)\(\text{n} \)\(\text{e} \)\(\text{r} \)\(\text{e} \)\(\text{s} \)\(\text{B} \)\(\text{r} \)\(\text{K} \) for the special case
\[
\vec{x}(t) = (vt, 0, 0), \quad \vec{v}(t) = (v, 0, 0)
\]

The eq. for \(t_- \) needs
\[
t_- = t - \frac{1}{c} \sqrt{\left(x - vt_\right)^2 + y^2 + z^2}
\]

\[\cdots\]

\[
x - vt_- = x - vt - \frac{v}{c} \sqrt{\left(x - vt_\right)^2 + y^2 + z^2}
\]

\[
\left(x - vt_-\right)^2 = 2(x - vt)(x - vt_-) + \left(x - vt\right)^2 = \frac{v^2}{c^2} \left(x - vt_\right)^2 + \frac{v^2}{c^2} \left(y^2 + z^2\right)
\]

\[
\left(x - vt_-\right)^2 - 2(x - vt)(x - vt_-) + \left(x - vt\right)^2 - \frac{v^2}{c^2} \left(y^2 + z^2\right) = 0
\]

\[
\frac{x - vt_-}{1 - \frac{v^2}{c^2}} = \frac{1}{c} \sqrt{2(x - vt) - \sqrt{4(x - vt)^2 - 4(y^2 + z^2) + \frac{4v^2}{c^2}(y^2 + z^2)}}
\]

\[
= \frac{1}{c} \sqrt{x - vt \pm \sqrt{\frac{v^2}{c^2} \left(x - vt\right)^2 + \frac{v^2}{c^2} \left(y^2 + z^2\right)}}
\]

The physical (retarded) value yields the smaller value for \(t_- \) \(\Rightarrow \) The physical value has \(t_+ \) the above eq.

Define \(R^\circ(x, t) := \sqrt{\left(x - vt\right)^2 + y^2 + z^2} \) as in \(\text{p} \) \(2.5 \)

\[
x - vt_- = \frac{1}{c} \sqrt{x - vt + \frac{v}{c} R^\circ(x, t)}
\]

This is the explicit solution for \(t_- \).

\[\text{Problem 35} \Rightarrow \]

\[
\frac{e}{\varphi(x, t)} = \sqrt{\left(x - vt\right)^2 + y^2 + z^2} - \frac{v}{c} \left(x - vt_-\right)
\]

\(\text{U} \) \(\text{J} \) \(\text{f} \) \(\text{2.5} \) \(\Rightarrow \) \(\text{t} \) \(\text{m} \) \(\text{d} \) \(\text{t} \) \(\text{n} \) \(\text{o} \) \(\text{L} \) \(\text{n} \) \(\text{b} \) \(\text{u} \) \(\text{h} \) \(\text{L} \) \(\text{s} \) \(\text{e} \) \(\text{p} \) \(\text{h} \) \(\text{l} \) \(\text{d} \) \(\text{e} \) \(\text{p} \) \(\text{h} \) \(\text{l} \) \(\text{s} \) \(\text{e} \) \(\text{p} \) \(\text{h} \) \(\text{t} \) \(\text{p} \) \(\text{h} \) \(\text{s} \) \(\text{e} \) \(\text{p} \)
\[(x-vt)^2 - \frac{y^2}{c^2} = R^+ \]

\[(x-vt)^2 + \frac{y^2}{c^2} = \left(R^+ + \frac{y}{c} (x-vt) \right)^2 \]

\[= \frac{y^2}{c^2} (x-vt)^2 + 2 \frac{y}{c} (x-vt) R^+ + R^+ \]

\[(x-vt)^2 + \frac{y^2}{c^2} = \left(R^+ + \frac{y}{c} (x-vt) \right) R^+ \]

\[f^2 \left[(x-vt) + \frac{y}{c} R^+ \right] + \frac{y^2}{c^2} = \left(R^+ \right)^2 + 2 \frac{y}{c} \left[(x-vt) + \frac{y}{c} R^+ \right] R^+ \]

\[f^2 (x-vt)^2 + 2 \frac{y}{c} (x-vt) R^+ \left(R^+ \right)^2 + \frac{y^2}{c^2} = \left(R^+ \right)^2 + 2 \frac{y}{c} (x-vt) R^+ \]

\[\left(R^+ \right)^2 (1 - \frac{y^2}{c^2}) = \left(R^+ \right)^2 (1 - \frac{u^2}{c^2}) \]

\[= \left(R^+ \right)^2 \frac{1}{1 - \frac{u^2}{c^2}} \]

\[\left(R^+ \right)^2 (x-vt)^2 + \frac{y^2}{c^2} = \left(R^+ \right)^2 \frac{1}{1 - \frac{u^2}{c^2}} f^2 \]

\[\text{Now, let} \]

\[e = \sqrt{(x-vt)^2 + \frac{y^2}{c^2} - \frac{y}{c} (x-vt)} = R^+(x_1,v) \]

\[\Rightarrow \phi(x_1,v) = \frac{e}{R^+(x_1,v)} \]

\[\text{and from Problem 4.2.1} \]

\[A(x_1,v) = \frac{\dot{v}}{c} \phi(x_1,v) = \frac{\dot{v}}{c R^+(x_1,v)} \]

\[\text{Thus, we have some results as x \neq u \neq 2} \]

\[\text{Note: solve via Computer, as x \neq u \neq 2.5, c would come!} \]